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On the exponential equations a* — ¥ = ¢ (1 < ¢ < 300)

Masaki Sudo *

Abstract

M. A. Bennett obtained the following theorem in 2001. If a, b, ¢ are positive integers with
a,b>2, and 1 < ¢ < 100, then the equation a® — bY = ¢ has at most one solution in positive
integers x and y except the ten exceptional cases. In this paper we will study the same problem

in the case of 1 < ¢ < 300. We follow Bennett’s method and we use a slight idea in the place

where we use computers.
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1 Introduction

M. A. Bennett studied the Diophantine equation
a® —=b =c (1)

where a, b, ¢ positive integers with a, b > 2, and 1 <c¢ <
100. From now on, a triple (a, b, ¢) means the Diophan-
tine equation (1). He obtained the following result([1],
Theorem 1.5).

The equation (1) has at most one solution in posi-
tive integers x and y, except for triples (a, b, ¢) satisfying
(a, b, ¢) €{(3, 2, 1), (2, 3, 5), (2, 3, 13), (4, 3, 13),

(16, 3, 13), (2, 5, 3), (13, 3, 10), (91, 2, 89),
(6, 2, 4), (15, 6, 9)}. In each of these cases, (1) has pre-

cisely two positive solutions.

We will try to extend the above result to the cases of
1 < ¢ £300.
We obtain

Theorem If a, b, ¢ are positive integers with a, b > 2,
and 1 < ¢ < 300, then the equation (1) has at most one
solution in positive integers r and y, except for a triple
(a, b, ¢) satisfying (a, b, c) = (280, 5, 275) besides the
above ten cases. In this exceptional case, (1) has precisely

two positive solutions.
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2 Necessary Results

Before we proceed with the proof of our Theorem, we

will mention a related result due to Scott([5]).

Proposition 1 b > 1 and c are positive integers and
a is a positive rational prime, then equation (1) has at
most one solution in positive integers x and y unless either
(a,b,¢) = (3,2,1), (2,3,5), (2,3, 13) or (2, 5, 3),
ora > 2,gcd(a, b) = 1 and the smallest t € N such
that b* = 1(moda) satisfies t = 1(mod2). In these sit-
uations, the given equation has at most two solutions. If
equation (1), with the above hypotheses, has distinct so-
lutions (z1, y1) and (x2, y2), then y2 — y1 = 1(mod 2),
unless (a, b, ¢) = (3, 2, 1), (2, 3, 5), (2, 3, 13), (2, 5, 3),
or (13, 3, 10)

As Bennett pointed out at the end of §2 in [1], we may
assume a > 6 and we will henceforth assume, without loss
of generality, that a and b are not perfect powers.

The following is the corollary to Theorem 2 of Mignotte
[4]; here, h(a) denotes the absolute logarithmic Weil
height of «, defined, for an algebraic integer «, by

1
h(a) = ————= logII, max{1, |o(c)|}
[Q(a) : Q]
where o runs over the embedding of Q(«) into C.
Proposition 2 Consider the linear form

A= b2 logag — bl loga1

where b1 and bz are positive integers and o1,z are



nonzero, multiplicatively independent algebraic numbers.

Set

D =[Q(ou, a2): Q]/[R(a1, az): R]

and let p, A\, a1 and a2 be positive real numbers with p >

4, A =logp,
a; > max{1, p|loga;| — log|a;| + 2Dh(c;)} (1 <i<2)
and

aiaz > max{20, 4)\2}.

Further suppose h is a real number with

h > max {3.5, 15X, D(log (b—l + bi)
a2z al
+log A+ 1.377) +0.023},

1
X=1v= dx +4+ Y We may conclude, then, that

log |A| > —(Co + 0.06)(A + h)? araz

1 1 1
where Co = )\3{ (2 + 2X(X+1)> <3

3 2
1 4ax /1 1 32v2(1 2

N ,+i(i+i)+w ,
9 3v\ar a2 3v2\/araz

3 Preparation toward the Proof

of Theorem

M. A. Bennett proved in [1] that the equation (1) with
a, b, ¢ positive integers and a, b > 2 has at most two
solutions in positive integers (zi, yi) (i = 1, 2), where
r1 < z2 and y1 < Ya.

Let us write
A =z;loga —yilogh (i = 1, 2).

According to [1](3.2),(3.3), we get

c ac
log A log— < log-—+— 2
og Az <logy o < Og(a—l)aw’ (2)
T2 Y2 1
log b > loga > Ay 3)
Also we know([1] the bottom of p901),
log A; < logb—z (t=1,2). 4)

In the case of ged(a, b) = 1, we obtain y2 — y1 > y1
through the second formula of (3.5) in [1]. That is y» >

2y1 + 1. We use this inequality without previous notice.

4 The Case gcd(a, b)=1

Suppose first that ged(a = 1 and that we have two

b)
positive solutions (z1, y1) and (z2, y2) to (1), with z1 <
z2 and y1 < Yo2.

We apply Proposition 2 to

Ay = z2loga — y2logb
where, in the notation of Proposition 2, we have
D=1, a1 =b, aa =a, by = y2, ba = 2
and, since we assume b > 2 and a > 6, may take

a1 = (p+1)logd, a2 = (p+1)loga.

%

Choosing p = 5.11, it followes that aia2
6.11%log2logb = 46.36471... and 4X\* = 4(log5.11)* =
10.6432 and (p + 1)log2 > 1.

Therefore we can use Proposition 2 to these
ai, az, b1, ba, p.

Let us write

Y2 Z2
1 log A
o8 ((p+1)loga + (p+1)logb> +log

+1.377+0.023 = Q.

As a™ > bY?2 means z2loga > y2logh, we have
X2 Y2
logb = loga’
log(log5.11) = 0.489316 - - -, we obtain

From this inequality and logA =

X2
logb

Q <log +log2 —log(p+1)+1.4

€2
log (1 11) = log —— 7725 -
+log(log 5.11) oglogb+077 5

x2
0.773.
logd +

h = max {8.56, log (1;”;6) + 0.773}.

That this is a valid choice for h follows from the above

< log

Let

inequality.

5 h=log 2 +0.773
logb

In this case we have

€2

+0.773 > 8.56.
logd

log




Then

T2 > exp7.787 = 2409.07... > 2409.  (5)
logd

1 1 .

— + — and are maximal for (a, b)

ai asz a1a2

=(7,2)

Since v = 4x + 4+ — is an increasing function for x =
X

L> 102‘% > 5.24767 - - -, v is minimal for y = 5.24767 - - -

and — is maximal for the same value of x.

v
We have
3
1 3 1 1+ 2
S(1+x)=— 7X1 :
v V2 4X +4+ X
1
il is an increasing function for x > 0, its
4X +4+ X

. 1
maximal value is —.

With these, from Proposition 2, we find that
Coh < 0.556501 - - - < 0.5566

and we also have

log Ay > —(0.5566 -+ 0.06)

2
x <log 5.11 + log (1:;b> + 0.773)

x(5.11 + 1)?log alog b.

We conclude

2
log Az > —23.01898 <10g <1§;b> + 2.405)

x log alogb.

Combining this with (2), from a > 6, we obtain

6
—x2loga + log Ec > log ﬁ

2
> —23.01808 <log (ng)) + 2.405) log alog b.

Since 1 < ¢ < 300 and logalogb > log 7log 2, we have

o log %
logb log alogb

2
+23.01898 <log <1:g2b> + 2.405)

contradicting (5).

6 The Case h = 8.56

€2

2410.
log b <

In this case we have

Combining this with (3), (4), we find that
v
c logd

For each value of 1 < ¢ < 300, this provides an upper

< 2410. (6)

bound upon b¥! and , via a** = bY' + ¢, upon a”*?,
ie. b¥1 <2410 x 300 = 723000, a®* < 723300.
To complete the proof of Theorem for relatively prime
a and b, we will argue as in Section 3 of [1].
Let us suppose that
b¥2 loga S

2 7

CEs s (7)

so that 22 is a convergent in simple continued fraction
Y2

log b

o8 , s& 2 _ p—r, where 27 is the r-th

loga Y2 qr qr

such convergent.

expansion to

In fact, we must have z2 = p, and y2 = ¢,. If not, then

ged(z2, y2) = d > 1 and so, writing z2 = dx and y2 = dy,

d—1
a™ —b"? = (a” — bY) a@pld—i=hy —
It follows that
d—1
Z a™pd T < ¢ (8)
i=0

If z1 = 1, this is a contradiction, since a > a — b¥* = c.
If 21 = 2, we have z2 > 3.
Ifd—1=1, we have d =2, xo = dxr = 2z > 3.
Therefore x > 2 and, so (d — 1)x > 2. This is a contra-

@=1r 5 g2 —p¥1 = ¢,

diction, since ¢ > a
We may thus assume that z1 > 3 (so that z2 > 4).

If d = 2 and z2 = 4, we have y2 > 6, for ged(z2, y2) = 2
and y2 > 2y1 +1 > 3.

Then (8) implies that a? 4+ b% < ¢ < 300.

Since we assume that a and b are not perfect powers, with
ged(a, b) = 1, we find 6 < a < 17. Now a? —b¥2 = ¢ <
300.

If a = 6,a* = 6% = 1296 and b > 5. This contradicts with
0 < 1296 — 5Y2 < 300, for y2 > 6.

Similarly we have a contradiction in the cases of 7 < a <
17.

Thus we conclude that we don’t have the cases of d =
2, x90=4,21 =3, y2 > 6.

If d =2, x2 = 6, yo = 4, we have a® — b* = ¢, ie. (a® —
b)) (a® + %) =c.

If @ = 6, then 9 > b > 5, and so a® + b > 216 + 25 >
241, a®—b* > 216—81 = 135. If a > 7, then a®+b% > 343.
These are a contradiction with ¢ < 300.

Similarly we find that the cases of d = 2, 2 > 6, y2 > 4
don’t occur.

If d = 3, we obtain z > 2 from z2 > 4. Then (8) means



b 4+ a”b¥ + a** < 300.

As a > 6, a®® > a* > 6* > 300. This is a contradiction.
Similarly if d > 4, we have a contradiction.
Eventually if d > 1, we find a contradiction.

If 27 is the rth convergent in the simple continued

qr
log b
expansion to loi, combining (2) with
a

logb Pr 1 .
- — ——— (Khinchin [3
loga  qr (ar+1 +2)g? ( 3
we have
c Az logb  pr
> = - =
qrb¥2loga = qrloga loga qr

1
> e —
(ar+1 + 2)61%

logb
where ar41 is the (r + 1)-st partial quotient to log .
oga
We thus have
b 1
ary1 > 28 _ o 9)
cqr

For each pair (a, b) under consideration, we compute

the initial terms in the simple continued expansion to
logb

loga
a convergent Pr Gith pr < 2410logb, pr > 2, ¢» > 3 and
q

via softwair ubasic and check to see if there exist

related partial c;uotient ar4+1 satisfiying (9) and a7 —b9" =
c.

As pr = x2, ¢» = y2 and a”? —bY2 = a®! —bY! = ¢, first we
check the case that its smaller solution satisfies a —b = c.
We make b move from 2 to 723000, and ¢ from 1 to 300.
We determine a from a = b+ c.

If ged(a, b) > 1, we exclude such (a, b). Also if a or b are
perfect powers we exclude them. If a is prime and the
smallest ¢ € N such that b* = 1(moda) is even, we also

exclude them.

We obtain
a b c DPr qr
13 3 10 3 7
91 2 89 2 13.

Under the condition a = b + ¢, these are only candidates
that the corresponding equations have at most two solu-
tions.

Next we investigate the case that its smaller solution sat-
isfies a — b* = ¢(k > 2). Then we find that there is no
(a, b, ¢) which has two solutions.

Similarly we check the case that its smaller solution sat-

isfies a™ — b = ¢(m > 2), and we know that there is no

(a, b, ¢) which the corrsponding equation has two solu-
tions.

At last we search the case that its smaller solution satisfies
a™ — b =c(m>2,k>2).

As candidates having two solutions , we have

a b c Dr qr
56 5 11 2 5
130 7 93 2 5
57 5 124 2 5
58 5 239 2 5
47 3 22 2 7
23 2 17 2 9
421 3 94 2 11
47 2 161 2 11
91 2 89 2 13
13 3 10 3 7
6 23 95 7

It is easily cheked that among these, there exist positive

integers 1 < pr, and y1 < g, with
aPr — pIr = g%1 — p¥1 > 0

only for (a, b, ¢) = (91, 2, 89) and = (13, 3, 10).
In fact we have 917 — 2% = 91 — 2 = 89, 13° — 37 =
13 -3 =10.

Let us suppose that

b2 loga
cyYs2

Since a > 6,y2 > 3 and 1 < ¢ < 300, we thus have
2 <b<10.
If b = 10, it follows that a > 7, y2 = 3, y1 = 1, whereby
a®' divises 99. This implies that ¢ < 89, contradicting
(10).
If b =7, it follows that y2 > 3 from (10). If y2 > 4, these
cases contradict (10). Then y2 = 3 and y1 = 1. So we
have a*2 — 7% = @™ — 7 = ¢. Therefore a™ |7 — 1 = 48.

So ¢ < 41, contradicting (10).

<2. (10)

Similarly we can treat the cases of b =5, 6.

If b =3, a > 10 by Proposition 1. Since ¢ < 300, we find
y2 < 6 by (10).

Then we have possibilities y1 = 1 and y2 = 3, 4, 5, 6; and
y1 =2 and y2 = 5, 6.

If y1 = 1, y2 = 3, a®*|3%> — 1 = 8 and ¢ < 5 contradicting
(10).

Similarly we find that the case y1 = 1, y2 = 4, contradicts
(10).

Ifyp = 1, y2 = 5, a®3* =1 = 80, so ¢ < 77. The
cases a = 80, 40 contradict (10). If a = 20, then z1 = 1,



and from 202 — 3% = 20 — 3 = 17 we have 20%2 = 260.
Contradiction. Similarly we find that the case a = 10
does not occur.

Ifb =2, a > 7 from ged(a, b) = 1. Since ¢ < 300, we
have y2 < 11 from (10). Then we have possibilities y1 = 1
and yo = 3,4,5,6,7,8,9,10, 11; and y1 = 2 and y2 =
5,6,7,8,9,10, 11; and y1 = 3 and y2 = 7, 8, 9, 10, 11;
and y1 =4 and y2 = 9, 10, 11; and y1 = 5 and y2 = 11;
We can treat these cases like the cases of b = 3, and we

find that these cases do not occur.
b¥2 loga

CY2

Eventually we obtain that the case < 2(c < 300)
does not occur.
Thus, with the result by Bennett(See 1 Introduction),

we proved Theorem in the case of ged(a, b) = 1.

7 The case a,b are not rela-

tively prime

If the equation at hand has two positive solutions, then

from

aml (amg—xl

— 1) = pYt (by2—y1 — 1),
if ordya = o and ord,b = 3, we find that

100 = Y18 (11)

Also we have

ordyc = za2ar. (12)

To see this, we assume z2a > y23. From (11), we obtain
T1y2af < T2y1000.

As a, 8 > 0, this contradicts with yoz1 > z2y1 ([1](3.1)).
So zaa < y23. Combining this with a2 — b¥2 = ¢, we
have (12).

By the just above inequality,

Y28 > woar + 1. (13)
Since y2x1 > 2y1, the equation
(B + o) — b2 = (14)

provides explicit bounds upon b and, via a”* = b¥! + ¢,
upon a.
We note that we need not consider squarefree values of ¢
from (12) and z2 > 2.
By way of example, we will give our arguments in detail
for ¢ =128 =27, 196 = 2% x 72, and 275 = 5% x 11.
Ifc=128=2", from (12),p=2, 22 =7, a = 1.
This implies z1 =1, 2, 3, 4, 5, 6.

If 1 = 1, equation (11) means y1 = 8 = 1, and so, from
(13), (14)

(b+128)7 — b® > 128.

This implies b < 126. We make b move from 2 to 126 with
step 2.

On each b, we check whether (b+ 128)7 — 128 is a power
of b. We find that in all the cases (b+ 128)7 — 128 is not
a power of b.

If 1 = 2, equation (11) means z1a = 2 = y1 8, and so,
yp=1,8=2o0ry1 =2, 8=1.

In the first case, from (13), (14) we are led to

(b+128)% — b* > 128

whereby b < 126. We make b move from 2 to 126 with
step 2.
First we check whether (b + 128)% — 128 is an integer or
not. If this is an integer we check whether it is a power of
b. We find that in all the cases (b + 128)% — 128 is not a
power of b.
Similarly we can treat the second case, and also we con-
clude that this case does not occur.
From similar deduction, we find that the equation a® —
bY = 128 has at most one positive solution (z, y).

If ¢ = 196 = 2% x 72, first we check the case p = 7. We
have zoa = 2, s0 2 = 2, = 1 and 1 = 1 and from (11),

y1 = B = 1. So we are led to
(b+196)> — b* > 196

whereby b < 35.
We make b move from 7 to 35 with step 7. On each b, we
check whether (b+ 196)® — 196 is a power of b. We find
that in all the cases (b4 196)* — 196 is not a power of b.
Second p = 2. Then we have (b + 196)2 — b* > 196,
whereby b < 34. From similar argument we have that (b+
196)2 — 196 is not a power of b where b =2, 4, 6, ---, 34.
So we find that the equation a® — Y = 196 has at most
one positive solution (z, y).

If ¢ = 275 = 5% x 11, we have p = 5, z2a = 2, so,
22 =2, =1, and from (11), y1 =3 = 1.

So we are led to
(b+275)* — b* > 275

whereby b < 45.
We make b move from 5 to 45 with step 5.
We only have 280% — 57 = 275. It is easy to see that the
smaller solution of 280% — 5¥ = 275is (1, 1).
Arguing similarly for the remaining non-squarefree val-

ues of ¢ < 300, together with the result by Bennett(See 1



Introduction), we find that there are no other additional
triples (a, b, ¢) with ged(a, b) > 1 for which (1) has two
positive solutions.

This completes the proof of Therorem.
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