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Abstract

M. A. Bennett obtained the following theorem in 2001. If a, b, c are positive integers with

a, b ≥ 2，and 1 ≤ c ≤ 100, then the equation ax − by = c has at most one solution in positive

integers x and y except the ten exceptional cases. In this paper we will study the same problem

in the case of 1 ≤ c ≤ 300. We follow Bennett’s method and we use a slight idea in the place

where we use computers.
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1 Introduction

M. A. Bennett studied the Diophantine equation

ax − by = c (1)

where a, b, c positive integers with a, b ≥ 2，and 1 ≤ c ≤
100. From now on, a triple (a, b, c) means the Diophan-

tine equation (1). He obtained the following result([1],

Theorem 1.5).

The equation (1) has at most one solution in posi-

tive integers x and y, except for triples (a, b, c) satisfying

(a, b, c) ∈ {(3, 2, 1), (2, 3, 5), (2, 3, 13), (4, 3, 13),

(16, 3, 13), (2, 5, 3), (13, 3, 10), (91, 2, 89),

(6, 2, 4), (15, 6, 9)}. In each of these cases, (1) has pre-

cisely two positive solutions.

We will try to extend the above result to the cases of

1 ≤ c ≤ 300.

We obtain

Theorem If a, b, c are positive integers with a, b ≥ 2

and 1 ≤ c ≤ 300, then the equation (1) has at most one

solution in positive integers x and y, except for a triple

(a, b, c) satisfying (a, b, c) = (280, 5, 275) besides the

above ten cases. In this exceptional case, (1) has precisely

two positive solutions.
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2 Necessary Results

Before we proceed with the proof of our Theorem, we

will mention a related result due to Scott([5]).

Proposition 1 b > 1 and c are positive integers and

a is a positive rational prime, then equation (1) has at

most one solution in positive integers x and y unless either

(a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13) or (2, 5, 3),

or a > 2, gcd(a, b) = 1 and the smallest t ∈ N such

that bt ≡ 1(mod a) satisfies t ≡ 1(mod 2). In these sit-

uations, the given equation has at most two solutions. If

equation (1), with the above hypotheses, has distinct so-

lutions (x1, y1) and (x2, y2), then y2 − y1 ≡ 1(mod 2),

unless (a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13), (2, 5, 3),

or (13, 3, 10)

As Bennett pointed out at the end of §2 in [1], we may

assume a ≥ 6 and we will henceforth assume, without loss

of generality, that a and b are not perfect powers.

The following is the corollary to Theorem 2 of Mignotte

[4]; here, h(α) denotes the absolute logarithmic Weil

height of α, defined, for an algebraic integer α, by

h(α) =
1

[Q(α) : Q]
log Πσ max{1, |σ(α)|}

where σ runs over the embedding of Q(α) into C.

Proposition 2 Consider the linear form

Λ = b2 log α2 − b1 log α1

where b1 and b2 are positive integers and α1, α2 are
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nonzero, multiplicatively independent algebraic numbers.

Set

D = [Q(α1, α2) : Q]/[R(α1, α2) : R]

and let ρ, λ, a1 and a2 be positive real numbers with ρ ≥
4, λ = log ρ,

ai ≥ max{1, ρ| log αi| − log |αi| + 2Dh(αi)} (1 ≤ i ≤ 2)

and

a1a2 ≥ max{20, 4λ2}.

Further suppose h is a real number with

h ≥ max

{
3.5, 1.5λ, D

(
log

(
b1

a2
+

b2

a1

)

+ log λ + 1.377

)
+0.023

}
,

χ =
h

λ
, v = 4χ + 4 +

1

χ
. We may conclude, then, that

log |Λ| ≥ −(C0 + 0.06)(λ + h)2 a1a2

where C0 =
1

λ3

{(
2 +

1

2χ(χ + 1)

)(
1

3

+

√
1

9
+

4λ

3v

(
1

a1
+

1

a2

)
+

32
√

2(1 + χ)
3
2

3v2
√

a1a2

)}2

.

3 Preparation toward the Proof

of Theorem

M. A. Bennett proved in [1] that the equation (1) with

a, b, c positive integers and a, b ≥ 2 has at most two

solutions in positive integers (xi, yi) (i = 1, 2), where

x1 < x2 and y1 < y2.

Let us write

Λi = xi log a − yi log b (i = 1, 2).

According to [1](3.2),(3.3), we get

log Λ2 < log
c

by2
< log

ac

(a − 1)ax2
, (2)

x2

log b
>

y2

log a
>

1

Λ1
. (3)

Also we know([1] the bottom of p901),

log Λi < log
c

byi
(i = 1, 2). (4)

In the case of gcd(a, b) = 1, we obtain y2 − y1 > y1

through the second formula of (3.5) in [1]. That is y2 ≥
2y1 + 1. We use this inequality without previous notice.

4 The Case gcd(a, b)=1

Suppose first that gcd(a, b) = 1 and that we have two

positive solutions (x1, y1) and (x2, y2) to (1), with x1 <

x2 and y1 < y2.

We apply Proposition 2 to

Λ2 = x2 log a − y2 log b

where, in the notation of Proposition 2, we have

D = 1, α1 = b, α2 = a, b1 = y2, b2 = x2

and, since we assume b ≥ 2 and a ≥ 6, may take

a1 = (ρ + 1) log b, a2 = (ρ + 1) log a.

Choosing ρ = 5.11, it followes that a1a2 ≥
6.112log2log6 = 46.36471 . . . and 4λ2 = 4(log5.11)2 =

10.6432 and (ρ + 1) log 2 > 1.

Therefore we can use Proposition 2 to these

a1, a2, b1, b2, ρ.

Let us write

log

(
y2

(ρ + 1) log a
+

x2

(ρ + 1) log b

)
+ log λ

+1.377 + 0.023 = Ω.

As ax2 > by2 means x2 log a > y2 log b, we have
x2

log b
>

y2

log a
. From this inequality and log λ =

log(log 5.11) = 0.489316 · · ·, we obtain

Ω < log
x2

log b
+ log 2 − log(ρ + 1) + 1.4

+ log(log 5.11) = log
x2

log b
+ 0.7725 · · ·

< log
x2

log b
+ 0.773.

Let

h = max

{
8.56, log

(
x2

log b

)
+ 0.773

}
.

That this is a valid choice for h follows from the above

inequality.

5 h = log
x2

logb
+ 0.773

In this case we have

log
x2

log b
+ 0.773 ≥ 8.56.
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Then

x2

log b
≥ exp 7.787 = 2409.07 . . . > 2409. (5)

1

a1
+

1

a2
and

1

a1a2
are maximal for (a, b)

= (7, 2).

Since v = 4χ + 4 +
1

χ
is an increasing function for χ =

h
λ
≥ 8.56

log 5.11
≥ 5.24767 · · ·, v is minimal for χ = 5.24767 · · ·

and
1

v
is maximal for the same value of χ.

We have

1

v2
(1 + χ)

3
2 =

1

v
1
2

(
1 + χ

4χ + 4 + 1
χ

) 3
2

.

As
1 + χ

4χ + 4 + 1
χ

is an increasing function for χ > 0, its

maximal value is
1

4
.

With these, from Proposition 2, we find that

C0 < 0.556501 · · · < 0.5566

and we also have

log Λ2 > −(0.5566 + 0.06)

×
(

log 5.11 + log

(
x2

log b

)
+ 0.773

)2

×(5.11 + 1)2 log a log b.

We conclude

log Λ2 > −23.01898

(
log

(
x2

log b

)
+ 2.405

)2

× log a log b.

Combining this with (2), from a ≥ 6, we obtain

−x2 log a + log
6c

5
≥ log

ac

(a − 1)ax2

> −23.01898

(
log

(
x2

log b

)
+ 2.405

)2

log a log b.

Since 1 ≤ c ≤ 300 and log a log b ≥ log 7 log 2, we have

x2

log b
<

log 6c
5

log a log b

+23.01898

(
log

(
x2

log b

)
+ 2.405

)2

contradicting (5).

6 The Case h = 8.56

In this case we have
x2

log b
< 2410.

Combining this with (3), (4), we find that

by1

c
<

x2

log b
< 2410. (6)

For each value of 1 ≤ c ≤ 300, this provides an upper

bound upon by1 and , via ax1 = by1 + c, upon ax1 ,

i.e. by1 < 2410 × 300 = 723000, ax1 < 723300.

To complete the proof of Theorem for relatively prime

a and b, we will argue as in Section 3 of [1].

Let us suppose that

by2 log a

c y2
> 2, (7)

so that
x2

y2
is a convergent in simple continued fraction

expansion to
log b

log a
, say

x2

y2
=

pr

qr
, where

pr

qr
is the r-th

such convergent.

In fact, we must have x2 = pr and y2 = qr. If not, then

gcd(x2, y2) = d > 1 and so, writing x2 = dx and y2 = dy,

ax2 − by2 = (ax − by)

d−1∑
i=0

aixb(d−i−1)y = c.

It follows that

d−1∑
i=0

aixb(d−i−1)y ≤ c. (8)

If x1 = 1, this is a contradiction, since a > a − by1 = c.

If x1 = 2, we have x2 ≥ 3.

If d − 1 = 1, we have d = 2, x2 = dx = 2x ≥ 3.

Therefore x ≥ 2 and, so (d − 1)x ≥ 2. This is a contra-

diction, since c ≥ a(d−1)x > a2 − by1 = c.

We may thus assume that x1 ≥ 3 (so that x2 ≥ 4).

If d = 2 and x2 = 4, we have y2 ≥ 6, for gcd(x2, y2) = 2

and y2 ≥ 2y1 + 1 ≥ 3.

Then (8) implies that a2 + b3 ≤ c ≤ 300.

Since we assume that a and b are not perfect powers, with

gcd(a, b) = 1, we find 6 ≤ a ≤ 17. Now a4 − by2 = c ≤
300.

If a = 6, a4 = 64 = 1296 and b ≥ 5. This contradicts with

0 < 1296 − 5y2 ≤ 300, for y2 ≥ 6.

Similarly we have a contradiction in the cases of 7 ≤ a ≤
17.

Thus we conclude that we don’t have the cases of d =

2, x2 = 4, x1 = 3, y2 ≥ 6.

If d = 2, x2 = 6, y2 = 4, we have a6 − b4 = c, i.e. (a3 −
b2)(a3 + b2) = c.

If a = 6, then 9 ≥ b ≥ 5, and so a3 + b2 ≥ 216 + 25 ≥
241, a3−b2 ≥ 216−81 = 135. If a ≥ 7, then a3+b2 > 343.

These are a contradiction with c ≤ 300.

Similarly we find that the cases of d = 2, x2 ≥ 6, y2 ≥ 4

don’t occur.

If d = 3, we obtain x ≥ 2 from x2 ≥ 4. Then (8) means
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b2y + axby + a2x ≤ 300.

As a ≥ 6, a2x ≥ a4 ≥ 64 > 300. This is a contradiction.

Similarly if d ≥ 4, we have a contradiction.

Eventually if d > 1, we find a contradiction.

If
pr

qr
is the r-th convergent in the simple continued

expansion to
log b

log a
, combining (2) with

∣∣∣∣ log b

log a
− pr

qr

∣∣∣∣ >
1

(ar+1 + 2)q2
r

(Khinchin [3])

we have

c

qrby2 log a
>

Λ2

qr log a
=

∣∣∣∣ log b

log a
− pr

qr

∣∣∣∣

>
1

(ar+1 + 2)q2
r

where ar+1 is the (r + 1)-st partial quotient to
log b

log a
.

We thus have

ar+1 >
bqr log a

cqr
− 2. (9)

For each pair (a, b) under consideration, we compute

the initial terms in the simple continued expansion to
log b

log a
via softwair ubasic and check to see if there exist

a convergent
pr

qr
with pr < 2410 log b, pr ≥ 2, qr ≥ 3 and

related partial quotient ar+1 satisfiying (9) and apr−bqr =

c.

As pr = x2, qr = y2 and ax2 −by2 = ax1 −by1 = c, first we

check the case that its smaller solution satisfies a− b = c.

We make b move from 2 to 723000, and c from 1 to 300.

We determine a from a = b + c.

If gcd(a, b) > 1, we exclude such (a, b). Also if a or b are

perfect powers we exclude them. If a is prime and the

smallest t ∈ N such that bt ≡ 1(moda) is even, we also

exclude them.

We obtain

a b c pr qr

13 3 10 3 7

91 2 89 2 13.

Under the condition a = b + c, these are only candidates

that the corresponding equations have at most two solu-

tions.

Next we investigate the case that its smaller solution sat-

isfies a − bk = c(k ≥ 2). Then we find that there is no

(a, b, c) which has two solutions.

Similarly we check the case that its smaller solution sat-

isfies am − b = c(m ≥ 2), and we know that there is no

(a, b, c) which the corrsponding equation has two solu-

tions.

At last we search the case that its smaller solution satisfies

am − bk = c(m ≥ 2, k ≥ 2).

As candidates having two solutions , we have

a b c pr qr

56 5 11 2 5

130 7 93 2 5

57 5 124 2 5

58 5 239 2 5

47 3 22 2 7

23 2 17 2 9

421 3 94 2 11

47 2 161 2 11

91 2 89 2 13

13 3 10 3 7

6 23 95 7 4

It is easily cheked that among these, there exist positive

integers x1 < pr, and y1 < qr with

apr − bqr = ax1 − by1 > 0

only for (a, b, c) = (91, 2, 89) and = (13, 3, 10).

In fact we have 912 − 213 = 91 − 2 = 89, 133 − 37 =

13 − 3 = 10.

Let us suppose that

by2 log a

c y2
≤ 2. (10)

Since a ≥ 6, y2 ≥ 3 and 1 ≤ c ≤ 300, we thus have

2 ≤ b ≤ 10.

If b = 10, it follows that a ≥ 7, y2 = 3, y1 = 1, whereby

ax1 divises 99. This implies that c ≤ 89, contradicting

(10).

If b = 7, it follows that y2 ≥ 3 from (10). If y2 ≥ 4, these

cases contradict (10). Then y2 = 3 and y1 = 1. So we

have ax2 − 73 = ax1 − 7 = c. Therefore ax1 |72 − 1 = 48.

So c ≤ 41, contradicting (10).

Similarly we can treat the cases of b = 5, 6.

If b = 3, a ≥ 10 by Proposition 1. Since c ≤ 300, we find

y2 ≤ 6 by (10).

Then we have possibilities y1 = 1 and y2 = 3, 4, 5, 6; and

y1 = 2 and y2 = 5, 6.

If y1 = 1, y2 = 3, ax1 |32 − 1 = 8 and c ≤ 5 contradicting

(10).

Similarly we find that the case y1 = 1, y2 = 4, contradicts

(10).

If y1 = 1, y2 = 5, ax1 |34 − 1 = 80, so c ≤ 77. The

cases a = 80, 40 contradict (10). If a = 20, then x1 = 1,
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and from 20x2 − 35 = 20 − 3 = 17 we have 20x2 = 260.

Contradiction. Similarly we find that the case a = 10

does not occur.

If b = 2, a ≥ 7 from gcd(a, b) = 1. Since c ≤ 300, we

have y2 ≤ 11 from (10). Then we have possibilities y1 = 1

and y2 = 3, 4, 5, 6, 7, 8, 9, 10, 11; and y1 = 2 and y2 =

5, 6, 7, 8, 9, 10, 11; and y1 = 3 and y2 = 7, 8, 9, 10, 11;

and y1 = 4 and y2 = 9, 10, 11; and y1 = 5 and y2 = 11;

We can treat these cases like the cases of b = 3, and we

find that these cases do not occur.

Eventually we obtain that the case
by2 log a

c y2
≤ 2 (c ≤ 300)

does not occur.

Thus, with the result by Bennett(See 1 Introduction),

we proved Theorem in the case of gcd(a, b) = 1.

7 The case a,b are not rela-

tively prime

If the equation at hand has two positive solutions, then

from

ax1(ax2−x1 − 1) = by1(by2−y1 − 1),

if ordpa = α and ordpb = β, we find that

x1α = y1β. (11)

Also we have

ordpc = x2α. (12)

To see this, we assume x2α ≥ y2β. From (11), we obtain

x1y2αβ ≤ x2y1αβ.

As α, β > 0, this contradicts with y2x1 > x2y1([1](3.1)).

So x2α < y2β. Combining this with ax2 − by2 = c, we

have (12).

By the just above inequality,

y2β ≥ x2α + 1. (13)

Since y2x1 > x2y1, the equation

(by1 + c)
x2
x1 − by2 = c (14)

provides explicit bounds upon b and, via ax1 = by1 + c,

upon a.

We note that we need not consider squarefree values of c

from (12) and x2 ≥ 2.

By way of example, we will give our arguments in detail

for c = 128 = 27, 196 = 22 × 72, and 275 = 52 × 11.

If c = 128 = 27, from (12), p = 2, x2 = 7, α = 1.

This implies x1 = 1, 2, 3, 4, 5, 6.

If x1 = 1, equation (11) means y1 = β = 1, and so, from

(13), (14)

(b + 128)7 − b8 ≥ 128.

This implies b ≤ 126. We make b move from 2 to 126 with

step 2.

On each b, we check whether (b + 128)7 − 128 is a power

of b. We find that in all the cases (b + 128)7 − 128 is not

a power of b.

If x1 = 2, equation (11) means x1α = 2 = y1β, and so,

y1 = 1, β = 2 or y1 = 2, β = 1.

In the first case, from (13), (14) we are led to

(b + 128)
7
2 − b4 ≥ 128

whereby b ≤ 126. We make b move from 2 to 126 with

step 2.

First we check whether (b + 128)
7
2 − 128 is an integer or

not. If this is an integer we check whether it is a power of

b. We find that in all the cases (b + 128)
7
2 − 128 is not a

power of b.

Similarly we can treat the second case, and also we con-

clude that this case does not occur.

From similar deduction, we find that the equation ax −
by = 128 has at most one positive solution (x, y).

If c = 196 = 22 × 72, first we check the case p = 7. We

have x2α = 2, so x2 = 2, α = 1 and x1 = 1 and from (11),

y1 = β = 1. So we are led to

(b + 196)2 − b3 ≥ 196

whereby b ≤ 35.

We make b move from 7 to 35 with step 7. On each b, we

check whether (b + 196)2 − 196 is a power of b. We find

that in all the cases (b + 196)2 − 196 is not a power of b.

Second p = 2. Then we have (b + 196)2 − b3 ≥ 196,

whereby b ≤ 34. From similar argument we have that (b+

196)2 − 196 is not a power of b where b = 2, 4, 6, · · · , 34.

So we find that the equation ax − by = 196 has at most

one positive solution (x, y).

If c = 275 = 52 × 11, we have p = 5, x2α = 2, so,

x2 = 2, α = 1, and from (11), y1 = β = 1.

So we are led to

(b + 275)2 − b3 ≥ 275

whereby b ≤ 45.

We make b move from 5 to 45 with step 5.

We only have 2802 − 57 = 275. It is easy to see that the

smaller solution of 280x − 5y = 275 is (1, 1).

Arguing similarly for the remaining non-squarefree val-

ues of c ≤ 300, together with the result by Bennett(See 1
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Introduction), we find that there are no other additional

triples (a, b, c) with gcd(a, b) > 1 for which (1) has two

positive solutions.

This completes the proof of Therorem.
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