マトリックス支援レーザー脱離イオン化-飛行時間型(MALDI-TOF) 質量分析装置

加藤明良*

Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Analyzer

Akira KATOH*

1. 装置整備の目的と背景

平成 16 年 10 月より発足したハイテクリサーチセン ターにおける研究プロジェクト「人にやさしい次世代 有機・バイオ材料の開発と評価」では,低分子有機化 合物からタンパク質複合体に至る様々なサイズや性質 を有する新規物質の開発を目指している。その遂行の ためにこれらすべての新規物質を迅速に同定できる汎 用性の高い分析装置が望まれていた。本装置は, 試料 の化学的性質に左右されにくく,巨大分子でも極めて 短時間で高感度に測定できるため, 有機化学の基礎研 究からプロテオーム研究に至るまで幅広い学術分野で 利用されている極めて汎用性の高い装置である。その 貢献度の高さから基本原理を開発した田中耕一氏は 2002年ノーベル化学賞を受賞している。このような特 徴を有する本装置は,多種多様な物質を扱う本プロ ジェクトにおいて必要不可欠であり,これによりすべ ての研究テーマで飛躍的な進展が期待できる。

2. 装置概要

本装置は「マトリックス支援レーザー脱離イオン化 (MALDI)法」と時間飛行(TOF)型質量分析装置を 組み合わせた質量分析計である。

MALDI 法は試料を紫外線吸収性のマトリックスと 混合させて混晶を形成し,そこに紫外線パルスレー ザーを照射することにより試料をイオン化させる手法 である。従来のイオン化法では,電子やキセノン原子 の衝突でイオン化エネルギーを与えていたが,これら の方法では試料に与えるエネルギーが大きすぎるため 多くの分子は分解してしまうという問題があった。こ

^{*}理工学部物質生命理工学科教授 (Professor , Dept. of Materials and Life Science)

れに対し MALDI 法では,吸収したエネルギーは主に マトリックスと試料分子間のプロトン移動反応に使わ れるため,結合解離を引き起こすような余剰エネル ギーが小さく,したがって不安定な試料でも分解させ ることなくその分子量を測定することができる。また, 測定に必要な試料量もフェムト(10⁻¹⁵)モルオーダー から測定可能であるため,微量な生体由来成分の分析 に対する適正は絶大である。さらに,試料純度に対す る許容度が高く試料を高純度に調製する必要がないの も,生体内複合物質など多種多様な試料を扱う本プロ ジェクトにとって有利な特徴である。

MALDI 法によって発生した試料イオンは,高電圧の 電極間で加速された後TOF型質量分析装置に導入され る。TOF 型質量分析装置では,生成したイオンが空間 的に離れた二点を飛行する時間を測定することにより その質量を求めている。この原理によればどんなに大 きな質量のイオンであっても待っていれば必ず検出器

図1 MALDI-TOF 質量分析装置 AXIMA-CFR Plus

に到達するので,測定可能な質量範囲に限界がないの がこの分析法の特徴である。

この分析装置の性能を最大限に利用するにはイオン をパルス的に発生させる必要がある。したがってパル スレーザー照射を用いる MALDI 法は TOF 型質量分析 装置にとって最適のイオン源であり,これらを組み合 わせた本装置は,本プロジェクト遂行のための強力な ツールであるといえる。

3. 分析例

3-1 低分子有機金属錯体 抗糖尿病薬を指向した複 素環-亜鉛錯体のMALDI-TOFMSスペクトルを図2-(a) に示す。この錯体は二つの複素環配位子と亜鉛イオン で形成されており,これらはイオン結合と配位結合で 結ばれているので,従来のいわゆる「ハードな」イオ ン化法では容易に分解してしまい目的錯体の同定はで きない。これに対し「ソフトな」MALDI法を用いれば 錯体を分解させることなく測定できることが示された。 また,金属原子は特有の比率で天然同位体を含んでお り,その同位体ピークを理論計算して測定データと比 較することで(図2-(b)),確実に亜鉛イオンが含まれ ていることが示された。

図 2 (a) 複素環-亜鉛錯体の MALDI-TOFMS スペクト ル; (b) 同位体を考慮したスペクトルパターンの計算値

図3 インスリン(ウシ)の MALDI-TOFMS スペクトル

図4 (a) ウシ血清アルブミンの MALDI-TOFMS スペ クトル; (b) 分子式から計算したスペクトル

<u>3-2 生体由来巨大分子</u> 図3にウシ由来インスリン の MALDI-TOFMS スペクトルを示す。分子量6千近い 領域でも1マスユニットの同位体ピークが十分に分離 された分解能の高いスペクトルが得られた。また図4 にはウシ血清アルブミンの MALDI-TOFMS スペクト ルを示した。このときの試料量は2.5x10⁻¹² モルと微量 であるが,分子量6万を超える巨大な分子でも正確に 同定できることが示された。

4. おわりに

MALDI-TOF 質量分析装置の歴史は未だ浅く,製品 の汎用化から 10 年経っていない。したがって単にプロ ジェクト研究の遂行だけでなく,多種多様な物質を扱 う我々の研究成果が,本装置の新しい応用例を提供で きるものと期待している。