高温超電導変圧器の励磁突入電流によるクエンチ特性

西宮 幸希夫*1,石郷岡 猛*2,二ノ宮 晃*3,新井 和昭*4

Quench Characteristics of High Temperature Superconducting Transformer for Inrush Current

Sakio NISHIMIYA^{*1}, Takeshi ISHIGOHKA^{*2}, Akira NINOMIYA^{*3}, Kazuaki ARAI^{*4}

ABSTRACT : As well known, an inrush current of transformer reaches about 10 times larger than the rated current. When such a large inrush current flows into a superconducting transformer, it will induce a quench of superconducting windings. In this paper, we fabricated a small experimental superconducting transformer, and investigated the behavior of superconducting winding against the inrush current. The experimental result shows that a superconducting winding quenches for such a large inrush current, but it returns quickly to superconducting state in few cycles spontaneously.

Index Terms : superconducting transformer, inrush current, quench, core saturation

(Received March 25, 2007)

1. 序 章[1]

一般に、変圧器を系統に投入する際に、鉄芯の飽和や ヒステリシスによって発生する励磁突入電流は、定常電 流の十倍程度に達すると言われている。通常、励磁突入 電流は数サイクル後には消滅するが、もしこの大電流の 値が超電導巻線の臨界電流を超えるならば、超電導巻線 はクエンチを引き起こす可能性がある。もし、2 次側に 負荷が接続されていなければ、励磁突入電流が発生して も、数サイクル後には消滅し励磁電流のみになるので、 超電導巻線がクエンチしたとしても、数サイクル後には 復帰できる可能性がある。しかし、系統投入時に変圧器 が負荷接続状態であれば、励磁突入電流消失後も定常電 流が発生し続けるので、一旦クエンチが生じると熱的損 失などにより超電導状態への復帰が困難になることが考 えられる。

本研究は,超電導変圧器の実用化には重要な問題であ る励磁突入電流に対する特性を調査し,検討・考察を行 った。実験は,試作した小型超電導変圧器に励磁突入電 流を印加し,このときの線材に発生する抵抗性電圧,温 度等からクエンチの特性を調査,さらに2次側無負荷・ 実負荷状態両方の比較も行った。

2. 励磁突入電流の原理

2.1 励磁突入電流とは^{[1][2]}

励磁突入電流とは、変圧器を電力系統に投入する際、 変圧器の鉄芯の飽和現象によって発生する大電流のこと である。この大電流は過渡的に発生し、定常電流の十倍 程度まで達するといわれており、電力機器へ大きな影響 を与えるものである。

励磁突入電流の発生原理を、図1に示す。巻数Nのコ イルに発生する電圧vと磁束 ϕ の関係は式(1)で与えられ る。なお ϕ_0 は残留磁束である。

$$\phi = \frac{1}{N} \int_0^t \mathbf{v} dt + \phi_0 \qquad \qquad \cdot \cdot \cdot (1)$$

定常状態における最大磁束は,投入位相角が0度の時, 印加電圧の実効値を V とすると,(2V/ωN)+φ₀となる。 鉄芯の飽和特性により,励磁電流のピーク値はさらに拡 大され,定常電流の十数倍の突入電流が発生する。通常 励磁突入電流は,巻線の持つ抵抗成分などにより,数サ イクルで消滅する。

^{*1:}大学院電気電子工学専攻博士前期課程

^{*2:} 電気電子工学専攻教授(ishigoka@st.seikei.ac.jp)

⁽Professor, Dept. of Electrical and Mechanical Engineering) *³: 電気電子工学専攻助手

^{*4:}独立行政法人 產業技術総合研究所 主任研究員

図1 励磁突入電流の発生原理

2.2 励磁突入電流と超電導変圧器

もし励磁突入電流が導体の臨界電流を超えると,超電 導線はクエンチするが,励磁突入電流は過渡的であるた め,数サイクル後には超電導状態へ復帰できる可能性が ある。この現象は導体内で発生する熱損失に依存すると 考えられる。ただし,2次側に負荷が接続された状態で 励磁突入電流が発生すると,突入電流が消滅したあとも 負荷電流が流れ続けるため,発生した熱が充分冷却され ずに超電導状態への復帰が困難になると考えられる。

3. 試験装置

3. 1 超電導変圧器

3.1.1 構成

本研究では,Bi2223/Ag 超電導テープ線材で巻かれた 超電導巻線と鉄芯から構成された超電導変圧器を試作し た。巻線は巻数40のパンケーキコイルを1ユニットとし, 1次側は2ユニットを直列接続,2次側は並列接続して おり,変圧比は2:1となる。コイルの諸元は表1の通り である。なおこれらコイルは産業技術総合研究所で製作 したものを使用した。

また1次巻線内側には、2箇所に銅-コンスタンタン熱 電対を、1次・2次巻線間には、磁束検出コイル(3次巻 線)を取り付けた。鉄芯は珪素鋼板で、巻芯と密に取り付 けられている。全体のサイズは幅 250mm×高さ 140mm× 奥行き 250mm である。変圧器の外観を図2,鉄芯の寸 法を図3, B-H特性を図4に示す。

図2 変圧器外観

UNIT:[mm]

*Cross Section of Core : Score =3.6 $\times\,10^{-3}[m^2]$

図3 鉄芯寸法

表 1 変圧器諸元表

	Primary	Secondary
Materials of Winding	Bi-2223/Ag HTS Tape	
Inner Radius of Coil	88.5mm	
Outer Radius of Coil	124mm	
Number of Turns	80	40
Connect	2 Series	2 Parallel
Size(W×H×D)	250mm×140mm×250mm	

3.1.2 巻線の直流臨界電流

巻線の直流臨界電流を知るために,直流電流による電 流-電圧特性を調べた。図5に電流-電圧特性を示す。

Bi-2223超電導線材のクエンチの定義は、一般的に 1µV/cm以上の抵抗性電圧が生じた時とされている。この 超電導巻線1ユニットの線材長は、およそ27.2mであるので、図5で抵抗性電圧が2.72mV発生した電流が臨界電流となり、結果から59.5Aとわかった。

3.1.3 定格

この変圧器の定格を表2のように定めた。容量3kVA 級の変圧器としては通常の1/4ほどのサイズになる。

	Primary	Secondary		
Rated AC Voltage at 50Hz	100V	50V		
Rated AC Current	30A	60A		
Maximum Flux Density		1.5T		
Capacity		3kVA		

表2 変圧器定格

3. 2 電源投入位相角制御装置

3. 2. 1 構 成^[6]

励磁突入電流を発生させるため,電源に変圧器を投入 する際の電圧位相角を制御する必要がある。そこでIGBT を用いた電源投入位相角制御装置を作成した。詳細は成 蹊大学理工学研究報告Vol.43 No.1 pp.51-52を参照。装 置外観を図6に,構成概略と動作原理を図7に示す。

3. 2. 2 動作試験

電源投入位相角制御装置の動作試験を行った。その時 の負荷の電流,電圧波形の一例を図8に示す。

図6 電源投入位相角制御装置外観

図7 構成概略図(上)と動作原理(下)

図8 負荷の電流,電圧波形(投入位相角90度)

4. 実験

4. 1 無負荷試験^[3]

変圧器2次側を開放して励磁突入電流を印加する実 験を行った。図9は実験回路を示す。なお超電導変圧器 は液体窒素で冷却し,電源電圧の投入位相角は,励磁突 入電流が最大になる0度とした。

図10,11は1次側の電流・電圧波形である。電源電圧 をそれぞれ100V,130Vとして励磁突入電流の最大値が臨 界電流の3倍,および5倍になるようにした。励磁突入 電流の最大値はそれぞれ199.3A,325.4Aであった。図10, 11では巻線臨界電流を超える励磁突入電流が発生するが, 数サイクルで消滅した。

図9 実験回路(無負荷試験)

図10 無負荷試験時の1次側の電流・電圧波形 (電源電圧100V)

(電源電圧130V)

4. 2 実負荷試験^[3]

変圧器2次側に抵抗負荷を接続し実験を行った。図12 に実験回路を示す。電源電圧100Vおよび130Vに対する 1次側の電流,電圧波形をそれぞれ図13,14に示す。

負荷抵抗は 1.1Ω で,定常電流は臨界電流の 0.9pu にな るよう設定した。

電源電圧 100V, 130V に対し, 励磁突入電流の最大値 はそれぞれ 200A, 300A になった。それらは,数サイク ルのうちに消滅し定常電流になる。励磁突入電流自身は 負荷抵抗には依存しないことが判る。

図12 実験回路(実負荷試験)

図13 実負荷試験時の1次側の電流・電圧波形 (電源電圧100V)

図14 実負荷試験時の1次側の電流・電圧波形 (電源電圧130V)

5. 解析・考察

5.1 抵抗性電圧

得られた結果から巻線のクエンチの様子を判別するた め,抵抗性電圧の抽出を行った。

得られた各々の電圧波形は,誘導性電圧を含む。そこ で磁束検出用の3次巻線の電圧を用いて誘導性電圧の除 去を行った。なお,このようにして得られた波形にはま だ誘導性電圧がかなり含まれており,「準抵抗性電圧」と 称する。

5.1.1 無負荷試験

図 15,16 に無負荷試験における準抵抗性電圧波形を示 す。なお電源電圧はそれぞれ 70V,130V である。

図16 無負荷試験における準抵抗性電圧波形 (電源電圧130V)

各準抵抗性電圧波形には、かなり誘導性電圧が含まれ ている。そこで励磁突入電流のピーク値における電圧に 注目をした。通常誘導成分であれば、電流変化のないピ ーク値では存在しないので、これを「抵抗性電圧」とし た。

図15に示すように励磁突入電流ピーク値が臨界電流以 下であれば抵抗性電圧は発生していない。つまり巻線は クエンチせず,超電導状態に止まっていることを示す。

一方,図16に示すように臨界電流を上回る値の励磁突 入電流になると抵抗性電圧が発生する。しかし臨界電流 を超えた第一波以降,励磁突入電流は定常状態へ向け減 衰をしてゆく。どのケースにおいても臨界電流以下に落 ち着くと抵抗性電圧は消滅していることが判る。つまり 一旦クエンチした超電導線材は、すぐさま超電導状態へ 復帰した。これは、臨界電流を超えている時間が非常に 短く、それに対し液体窒素による冷却が充分に行われて いるからと考えられる^[4]。

図17に発生した抵抗性電圧と電流の関係を示す。測定 点が示されている線は無負荷実験により得られた抵抗性 電圧のピーク値を,細線は図5から得られた近似指数曲線 を,太線は図5の結果から得られたn値を理論式(2)に代入 し算出した理論曲線を示す。式(2)は,超電導体における 臨界電流付近での電流・電圧の関係式である^[8]。

(a)V: 発生電圧[V]

(b)I:印加電流[A]

(c)Eo: クエンチ時に発生する電圧(定義 1µV/cm)

(d)n: 超電導線材の性能を示す指標 n 値(図 5 よりおよ そ 15)

(e)Ic:臨界電流值[A]

直流電流印加による近似曲線(細線),およびn値より 算出した理論曲線(太線)は,臨界電流値を超えると急激 に電圧が上昇する形になっている。

図17 超電導変圧器巻線の電流-電圧特性

実験によって得られた励磁突入電流に対する抵抗性電 圧は、直流に対する特性に比べ低い電流値で電圧が発生 しはじめている。これは交流ヒステリシス損による影響 と思われる。一方、臨界電流以上では直流よりも電圧が 低い。これは励磁突入電流が連続的電流ではなく間欠的 パルス電流のため、冷却の効果が出ていることによると 思われる。

5.1.2 実負荷試験

同様の解析を実負荷試験においても行った。図18, 19 に負荷試験における準抵抗性電圧波形を示す。

-5-

図18 実負荷試験における準抵抗性電圧波形 (電源電圧100V)

図19 実負荷試験における準抵抗性電圧波形 (電源電圧130V)

State	Source	Peak of Inrush	Resistive
	Voltage[Vrms]	Current[A]	Voltage[V]
1.6Ω	100	211.1	20.9
	130	314.7	43.5
1.1Ω	100	213.3	19.5
	130	310.3	42.0

表3 電流ピーク値における抵抗性電圧の値

電流ピーク値における抵抗性電圧を表3に示す。電圧 130Vの時は、励磁突入電流の最大値が直流臨界電流の5 倍以上である300A近くまで達しているため、抵抗性電 圧のピーク値は約40V発生している。その後抵抗性電圧 は急速に減少し、約3サイクル後には消滅した。定常電 流が直流臨界電流の90%近くあり、クエンチによる熱が 維持されやすい環境にもかかわらず、抵抗性電圧は消滅 している。これは1次電流が臨界電流値を超えている時 間は非常に短いため、それ以外の時間に損失熱が冷却に より十分除去されるためと考えられる。

5.2 抵抗性電圧による損失計算

5-1で議論した抵抗性電圧より、励磁突入電流第一 波における損失を計算した。しかし実験では、抵抗性電 圧のピーク値しか測定できなかった。そこで抵抗性電圧 は電流に比例する事に着目し、両者のピーク値を合わせ て、波形については電流波形を適用した推定波形を用い て損失を求めた。図 20 は電圧 130V での無負荷試験の時 の抵抗性電圧推定波形である。

上述の方法で算出した電圧波形を元に,式(3)より励磁 突入電流第1波において発生する損失を求めた。

$$Q_{pri} = \int_{0}^{T} v_{r} \cdot i dt \qquad \qquad \cdot \cdot \cdot (3)$$

(a)T: 励磁突入電流が臨界電流を上回る時間[sec]
(b)v_r: 推定抵抗性電圧[V]
(c)i:電流[A]

(d)Qpri: 第1波で生じる一次側の損失[J]

図20 抵抗性電圧推定波形(無負荷試験・電圧130V)

図21 各試験における励磁突入電流第1波での損失

図21は, 無負荷試験, 実負荷試験(1.6Ω, 1.1Ω)におけ る, 励磁突入電流第1波での損失を示す。

励磁突入電流300Aの時の損失は、いずれも40J程度で あった。また、負荷の有無にかかわらず、励磁突入電流 によって発生する損失は同じであった。

5.3 ジュール熱損失

臨界電流を超える電流が超電導線材に流れるとジュー ル熱が発生する。本節では、導体内で発生するジュール 熱の解析を行った。

銀シース超電導線材は、フィラメントがクエンチする と、それ以上の電流は銀材部分に転移する。本項では臨 界電流以上の電流が流れフィラメント部分がクエンチし、 電流が全て銀材部分に転移したと仮定し、励磁突入電流 第1波におけるジュール熱損失を求めた。電流と単位長 さ当たりのジュール熱 W[J/m]の関係を(4)式に示す。

$$W = \frac{\rho_{LN2}}{S} \int_0^T i^2 dt \qquad \cdots (4)$$

(a)ρ_{LN2}:液体窒素中での銀の抵抗率^[5]で、0.3×10⁻⁸[Ω・m]
(b) S:線材銀部分の断面積。線材総断面積=0.8×10⁻⁶[m²],

線材銀比=2.2^[5]より, 0.55×10⁻⁶[m²]

(c) i: 電流[A]

(d) T: 電流が臨界電流を上回る時間[sec]

巻線は断熱状態を仮定し,各実験での状況を想定して 計算を行った。なおこの条件は銀材すべてに電流が転移 していることを考えているため,充分余裕のある検討に なっている。図 22 は無負荷試験,実負荷試験(1.6Ω, 1.1Ω) の計算結果である。

めた損失の比較

いずれの結果も、励磁突入電流300Aでは50J程度の損 失が発生した。また負荷の有無に関わらず同様の結果が 得られた。図23は前節で行った実験値解析(図10)との比 較である。

実験で得られた抵抗性電圧から求めた損失と比較する と,計算結果は損失が大きくでている。これは計算の条 件(完全断熱,および電流のすべてが銀材に転移すると仮 定)が過剰に厳しいためで,実際には液体窒素による冷却 と,一部電流が超電導フィラメントに流れる効果がある ことによると思われる。

次に銀材の熱容量から,第1波においての温度上昇ΔT を,式(5)を用いて求めた。

$$\Delta Q = C_{77} \cdot \Delta T [J] \qquad \cdot \cdot \cdot (5)$$

(a) AQ: 第1波での蓄積ジュール熱[J]

(b)C₇₇:液体窒素中での銀の熱容量[J/K] 銀の比熱は^[7]160[J/K・kg],銀の密度^[8]は 10490[kg/m³]なので、C₇₇=0.92[J/K]

各状態での計算結果を図24に示す。励磁突入電流が 300Aに達したとしても、温度上昇は2K程度と考えられる。 Bi2223高温超電導体の臨界温度^[5]はおよそ110Kなので、 この温度上昇では、臨界温度以上に達することはないと 推測される。

図24 銀の比熱からもとめた励磁突入電流第1波で発生 する温度上昇の電流依存性

図25 熱電対取り付け位置

実験では、図 25 に示す様に、1 次巻線の2 次巻線側・ 鉄芯下部に位置 2 カ所に銅-コンスタンタン熱電対を付 け温度測定を行った。図 26 に電圧 70V(励磁突入電流最 大 40A)無負荷試験,図 27,28,29 に電圧 130V(励磁突 入電流最大 300A)時の無負荷試験,および実負荷試験(負 荷抵抗 1.6Ω,1.1Ω)の温度波形を示す。いずれの結果も 継続的な温度上昇は見られなかった。励磁突入電流によ って発生する熱量が蓄積する時間に対し、冷却される時 間が長いため温度上昇が少なかったこと、および熱電対 の応答速度が低かった事によると考えられる。

図28 実負荷試験温度波形(電圧130V, 負荷抵抗1.6Ω)

図29 実負荷試験温度波形(電圧130V, 負荷抵抗1.1Ω)

5.4 総括

5.1, 5.2, 5.3 節で行った解析より,高温超電導変圧器 に臨界電流の約5倍,定格電流の約10倍の励磁突入電流 が流れると,超電導変圧器1次巻線はクエンチを起こし, 励磁突入電流第1波で50J程度の損失が発生した。

その後, 励磁突入電流の減衰とともに, クエンチした 超電導体は超電導状態へと速やかに復帰することがわか った。

また変圧器励磁時に2次側に負荷が接続された状態で も、50J程度の損失、2K程度の温度上昇が発生したが、 それら損失は励磁突入電流の減衰と共に減衰し、負荷電 流が流れる定常状態であっても、超電導状態に復帰して そのまま運転が可能であることもわかった。

つまり超電導変圧器を製作・運転する上で,定格電流 の10倍程度の励磁突入電流であれば,対策等を施す必要 はないと言える。しかし臨界電流の10倍,定格電流の 20倍程度の励磁突入電流が発生したとすると,ジュール 熱損失は約200J,温度上昇10K以上になると思われ,冷 却条件によっては超電導変圧器の臨界温度を突破し,超 電導状態へ復帰することが困難になる恐れがある。

6. 結 論

本論文は,超電導変圧器を電力系統に投入する際に時 折発生する励磁突入電流に対する特性を調査するため, 小型の超電導変圧器を試作し,励磁実験を行った。実験 結果から,以下の結論を得ることが出来た。

- (1) 超電導変圧器に直流臨界電流の5倍,定格電流の 10倍程度の励磁突入電流が発生すると,抵抗性電圧 が発生し、クエンチを起こす。
- (2) 発生する損失は, 無負荷状態・実負荷状態ともに 約40J程度であった。
- (3) 発生する損失による温度上昇は最大で2K程度と 推定される。
- (4) 励磁突入電流によってクエンチを起こした超電導 変圧器は、励磁突入電流の減衰とともに超電導状態 へと復帰することが可能である。
- (5) 上記の理由としては, 励磁突入電流の発生時間が 冷却時間に対して短いため, 蓄積されたジュール熱 損失が充分冷却されるためであると思われる。
- (6) 2次側に負荷を接続した状態で励磁突入電流が発生したとしても、(5)と同様の理由により超電導状態へ復帰することが可能である。
- (7) 超電導変圧器を製作・運転する上で、定格電流の 10倍程度の励磁突入電流であれば、対策等を施す必 要はない。

ただし,超電導状態への復帰に関しては,変圧器のサ イズ,巻線構造に伴う冷却条件,等々に依存することが 考えられるので,今後の実器の開発に関しては更なる検 討が必要であろう。

参考文献

- Takeshi Ishigohka, Kenji Uno, and Sakio Nishimiya, "Experimental study on Effect of In-rush Current of Superconducting Transformer" *IEEE Transaction on applied superconductivity*, vol.16, no.2, pp.1473-1476, June 2006.
- [2] John H. Brunke, Klaus J. Frohlish, "Elimination of Transformer Inrush Currents by Controlled Switching Part1:Theoretical Considerations" *IEEE Transaction on Power Delivery.* vol.16, no.2, pp.276-279, April 2001.
- [3] Yusherlg Zhou, Qingshuo Song, Fang Guo, Jingdong Li, and Yuejin Tang "Quench Developing Process of HTS Tapes Under Sinusoidal

Over-Currents" *IEEE Transaction. Applied Superconductivity*, vol. 15, no. 2, pp.1651- 1654, June 2005.

- [4] K. Mutsuura, H. Shimizu, Y. Yokomizu, and T. Matsumura, "Characteristics of Flux Flow Resistance Generation in Bi2223 Bulk Supplied Pulse Current" *IEEE Transaction on Applied Superconductivity*, vol.15, no.2, pp.2003-2006, June 2005.
- [5] K. Yamazaki, S. Kobayashi, T. Katou, K. Ookura, M. Ueyama, J. Fujikami, N. Ayai, E. Ueno, M. Kikuchi, K. Hayashi, and K. Satou, "Development of Bi-Based Superconducting Wires" *Sumitomo Electric Industries, Ltd. Technical Review.* March 2004.
- [6] 江尻雄一, 亀田悦正「任意の位相タイミングで投入 するスイッチ回路の研究」 富山工業高校 研究報 告書 2002年
- [7] 低温工学データブック 低温工学協会関西支部 1997 年1月
- [8] 超伝導・低温工学ハンドブック 低温工学協会 1993 年11月