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1. Introduction

Automorphic forms and representations are im-

portant objects in number theory and their investi-

gations are mainly based on the properties of asso-

ciated special functions. In particular, the precise

analytic properties of Whittaker functions (see §2
for the definition) are required in the study of the

Fourier expansions of automorphic forms and their

related topics such as L-functions (cf. [2] and its

references).

A propagation formula for class one Whittaker

functions on GL(n,R) was given in the recent pa-

per of Ishii-Stade [5]. This is a formula express-

ing Whittaker functions on GL(n,R) in terms of

those on GL(n − 1,R) and the proof is based on

their explicit formulas. In the class one case, there

is an elementary relation between real and complex

Whittaker functions on GL(n) [9], and thus we have

a propagation formula for those on GL(n,C). We

expect that there is a similar propagation formula

in the non-class one cases. However in such cases,

the relation between real and complex Whittaker

functions is not known and also their explicit for-

mulas are not obtained yet except some cases of low

degrees (cf. [6], [7], [4]).

In this paper, we give a propagation formula for

principal series Whittaker functions on GL(3,C)

based on their explicit formulas obtained in our re-

cent paper [4]. Our result seems not only to show

the similarity between the real and the complex

cases but also to give a hint on a basis of gln-module
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which is suitable for an explicit description of the

Whittaker functions on GL(n,C) (cf. [1], [3]).

2. Definition of Whittaker functions

In this section, we recall the definition of Whit-

taker function which is our main object in this pa-

per.

Let G = NAK be an Iwasawa decomposition of

a real reductive group G. For an (irreducible) ad-

missible representation (π,Hπ) of G, we choose a

K-type (τ∗, Vτ∗) in π which occurs with multiplic-

ity one and fix an injective K-homomorphism i ∈
Hom K(τ∗, π|K). Here (τ∗, Vτ∗) means the contra-

gradient representation of (τ, Vτ ). Moreover, take a

non-degenerate character η of N . Let us consider

the intertwining space

Iη,π = Hom (gC,K)(π,C∞IndG
N (η))

between (gC, K)-modules π and C∞IndG
N (η) con-

sisting of all K-finite vectors, where C∞IndG
N (η)

is the induced representation of G from η as C∞-

induction. For each T ∈ Iη,π , we define a Vτ -valued

function Ti on G by

T (i(v∗))(g) = 〈v∗, Ti(g)〉, v∗ ∈ Vτ∗ , g ∈ G.

Here 〈·, ·〉 is the canonical bilinear form on Vτ∗×Vτ .

The function Ti means a restriction of T ∈ Iη,π to

K and satisfies

Ti(ngk) = η(n)τ(k)−1Ti(g), (n, g, k) ∈ N×G×K.

Then we put

Wh(π, η, τ)mod

=
⋃
i

{
Ti

∣∣T ∈ Iη,π, Ti is moderate growth
}
.
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Here, the union runs through all embeddings i ∈
Hom K(τ∗, π|K) and the term ”moderate growth”

is by means of [10]. According to the multiplicity

one theorem of Shalika [8], the dimension of the

space Wh(π, η, τ)mod is at most one. A unique (up

to constant) element in Wh(π, η, τ)mod is called a

(primary) Whittaker function.

3. Whittaker functions on GL(3,C)

In this section, we recall an explicit formula of

principal series Whittaker functions on GL(3,C)

obtained in our previous paper [4].

3.1 Groups and representations

Let G = GL(3,C) be the complex general linear

group of degree 3, which is viewed as a real reductive

group, with the center

ZG = {ru13 | r ∈ R>0, u ∈ U(1)} � C×.

Here 1n is the unit matrix of degree n. Let K =

U(3) be a maximal compact subgroup of G, and

define subgroups A and N of G by

A = {diag (a1, a2, a3) ∈ G | ai ∈ R>0, i = 1, 2, 3},

N =

⎧⎨
⎩n(x) =

⎛
⎝1 x1 x2

0 1 x3

0 0 1

⎞
⎠ ∈ G

∣∣∣∣∣∣x = (xi) ∈ C3

⎫⎬
⎭ .

Then we have an Iwasawa decomposition G = NAK.

The centralizer M of A in K is given by

M = {diag (u1, u2, u3) |ui ∈ U(1), i = 1, 2, 3}
� U(1)3.

Then P = NAM is the upper triangular subgroup

of G, which is a minimal parabolic subgroup of G.

The equivalence classes of irreducible continuous

representations of K are parameterized by the set

of highest weights

Λ = {μ = (μ1, μ2, μ3) |μ ∈ Z3, μ1 ≥ μ2 ≥ μ3}.
We denote by (τμ, Vμ) the representation of K as-

sociated with μ ∈ Λ and take the (normalized) GZ-

basis {f (M)}M∈G(μ) of the representation space Vμ

which is parameterized by the set G(μ) of G-patterns

M belonging to μ. Here a G-pattern M ∈ G(μ) is

a triangle

M =

(
μ1 μ2 μ3

α1 α2
β

)
consisting of 6 integers satisfying the inequalities

μ1 ≥ α1 ≥ μ2 ≥ α2 ≥ μ3, α1 ≥ β ≥ α2.

Let us take a character σn of M defined by

σn(diag(u1, u2, u3)) = un1
1 un2

2 un3
3 ,

with the parameter n = (n1, n2, n3) ∈ Z3. More-

over, if we denote the complexification of the Lie

algebra of A by aC and the diagonal matrix unit

with (i, i)-entry 1 and the remaining entries 0 by

Eii ∈ aC, let us take an element ν in the dual a∗
C

of

aC identified with (ν1, ν2, ν3) ∈ C3 via νi = ν(Eii)

for 1 ≤ i ≤ 3. Then the induced representation

π = π(ν, σn) = IndG
P (1N ⊗ eν+ρ ⊗ σn)

of G from the parabolic subgroup P = NAM is

called the principal series representation of G. Here

ρ is the half-sum of the positive restricted roots, i.e.,

eρ(diag (a1, a2, a3)) =

(
a1

a3

)2

, diag (a1, a2, a3) ∈ A.

The central character of π is given by

ZG 	 ru13 
→ rν̃uñ, r ∈ R>0, u ∈ U(1),

with ν̃ = ν1 + ν2 + ν3 and ñ = n1 + n2 + n3,

and the minimal K-type of π is the representation

(τm, Vm) of K associated with the dominant per-

mutation m ∈ Λ of n.

We take a non-degenerate character η of N de-

fined by

η(n(x)) = exp
(
2π
√−1Im (x1 + x3)

)
.

3.2 Explicit formula

Let π = π(ν, σn) be an irreducible principal series

representation with the minimal K-type (τ∗, Vτ∗) =

(τm, Vm) associated with the dominant permutation

m = (m1, m2, m3) ∈ Λ of n, and let η be the non-

degenerate unitary character of N defined in the

previous subsection.

For an element f(M) in the GZ-basis {f (M)} of

Vm and a Whittaker function φ ∈ Wh(π, η, τ)mod

which is an Vτ -valued function on G, we define the

M -component φ(M) of φ by

φ(M ; g) = 〈φ(g), f(M)〉, g ∈ G.

Whittaker functions are determined by its A-radial

parts (i.e. its restriction to A) because of the Iwa-

sawa decomposition of G. Moreover, the values of

Whittaker functions on the center ZG of G are given

by the central character of π, i.e.,

φ(rug) = rν̃uñφ(g),

where r ∈ R>0, u ∈ U(1), and g ∈ G. Therefore,

we can describe Whittaker functions as functions of

two variables with the coordinates

y1 =
a1

a2
, y2 =

a2

a3

for diag (a1, a2, a3) = a3 · diag (y1y2, y2, 1) ∈ A.
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To state an explicit formula for the primary Whit-

taker function on G, we introduce some notations.

If we write m = (na, nb, nc), then we put

(λ1, λ2, λ3) =

(
νc − ν̃

3
, νa − ν̃

3
, νb − ν̃

3

)
.

For each G-pattern M =

(
m1 m2 m3

α1 α2
β

)
∈ G(m), we

put δ(M) = α1 + α2 −m2 − β and

ζ
(1)
1 (M) = λ1 −m3 + β,

ζ
(1)
2 (M) = λ2 + m1 − β,

ζ
(1)
3 (M) = λ3 + α1 − α2 − |δ(M)|,

ζ
(2)
1 (M) = −λ1 + m1 − β − δ(M),

ζ
(2)
2 (M) = −λ2 −m3 + β + δ(M),

ζ
(2)
3 (M) = −λ3 + m1 −m3 − α1 + α2.

Theorem 1. Let W3(y) ∈ Wh(π, η, τ)mod be the

(A-radial part of) primary Whittaker function with

the M -components W3(M ; y) = y2
1y

2
2W̃3(M ; y) for

each G-pattern M =

(
m1 m2 m3

α1 α2
β

)
∈ G(m). Then

the function W̃3(M ; y) has the following integral ex-

pressions:

W̃3(M ; y)

=
1

(2π
√−1)2

×
∫

s1

∫
s2

V3(M ; s1, s2)(πy1)
−s1(πy2)

−s2ds1ds2

= 24(πy1)
−λ3+m1−m3

2 (πy2)
λ3+m1−m3

2

×
∫ ∞

0

KA

(
2πy1

√
1 +

1

v

)
KB

(
2πy2

√
1 + v

)

×vC(1 + v)D dv

v
.

Here, in the first integral expression of Mellin-Barnes

type, the paths si of integrations are the vertical

lines from Re si −
√−1∞ to Re si +

√−1∞ with

enough large real part and the integrand V3(M ; s1, s2)

is defined by

V3(M ; s1, s2)

=

2∏
i=1

3∏
j=1

Γ

(
si + ζ

(i)
j (M)

2

)

×Γ

(
s1 + s2 + ζ

(1)
3 (M) + ζ

(2)
3 (M)

2

)−1

.

Also, in the second integral expression of Euler type,

Kν is the K-Bessel function and the parameters A,

B, C, and D are given by

A =
ζ
(1)
1 (M)− ζ

(1)
2 (M)

2
,

B = A + δ(M),

C =
2ζ

(1)
3 (M)− ζ

(1)
1 (M)− ζ

(1)
2 (M)

4
,

D =
|δ(M)|

2
.

4. Whittaker functions on GL(2,C)

In this section, we derive an explicit formula of

principal series Whittaker functions on GL(2,C) by

similar computation to the case of GL(3,C).

4.1 Groups and representations

Let G′ = GL(2,C) be the complex general linear

group of degree 2 and G′ = N ′A′K ′ be its Iwasawa

decomposition, where K ′ = U(2) is a maximal com-

pact subgroup of G′ and

A′ =

{(
a1 0
0 a2

) ∣∣∣∣ ai ∈ R>0, i = 1, 2

}
,

N ′ =

{
n(x) =

(
1 x

0 1

) ∣∣∣∣ x ∈ C

}
.

The center ZG′ of G′ is {ru12 | r ∈ R>0, u ∈ U(1)} �
C×. The upper triangular subgroup of G′ is P ′ =

N ′A′M ′, where M ′ is the centralizer of A′ in K ′

given by

M ′ =

{(
u1 0
0 u2

) ∣∣∣∣ ui ∈ U(1), i = 1, 2

}
� U(1)2.

Let g′ = gl(2,C) be the Lie algebra of G′. If we

put a Cartan involution θ(X) = −tX̄ for X ∈ g′ and

denote the +1 and the −1 eigenspaces of θ in g′ by

k′ and p′, respectively. Then k′ is the Lie algebra of

K ′ and g′ has a Cartan decomposition g′ = k′ ⊕ p′.

For 1 ≤ i, j ≤ 2, let Eij (resp. E′ij) in g′ be the

matrix unit with its (i, j)-entry 1 (resp. J) and the

remaining entries 0. Here J is the imaginary unit;

J2 = −1. Moreover put H12 = E11 − E22, H ′
12 =

E′11 − E′22, I2 = E11 + E22, and I ′2 = E′11 + E′22.

Then we have k′ = Zk′ ⊕ k′0 and p′ = Zp′ ⊕ p′0 with

Zk′ = RI ′2,

k′0 = RH ′
12 ⊕R(E12 − E21)⊕R(E′12 + E′21),

Zp′ = RI2,

p′0 = RH12 ⊕R(E12 + E21)⊕R(E′12 − E′21).

In the complexifications k′
C

and p′
C
, we use the sym-

bols Ik′

2 = −√−1I ′2, Hk′

12 =
√−1H ′

12, and

Ek′

ij =
1

2

{
(Eij − Eji)−

√−1
(
E′ij + E′ji

)}
,
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in k′
C

and I
p′

2 = I2, H
p′

12 = H12, and

E
p′

ij =
1

2

{
(Eij + Eji)−

√−1
(
E′ij − E′ji

)}
,

in p′
C
.

We can parameterize the equivalence classes of

irreducible continuous representations of K ′ = U(2)

by the set

Λ′ = {μ′ = (μ′1, μ
′
2) |μ′ ∈ Z2, μ′1 ≥ μ′2},

from the highest weight theory. The representation

space Vμ′ of the representation τμ′ associated with

μ′ = (μ′1, μ
′
2) ∈ Λ′ has the (normalized) GZ-basis

{f ′(M ′)}M ′∈G(μ′) as in the case of U(3). Here

G(μ′) =
{

M ′ =
(

μ′

1 μ′

2
α′

)∣∣∣α′ ∈ Z, μ′1 ≥ α′ ≥ μ′2

}
.

The explicit action of k′
C

on the GZ-basis is given as

follows.

Ek′

ii f
′(M ′) = w′if

′(M), i = 1, 2,

Ek′

12f
′(M ′) = (μ′1 − α′)f ′ (M ′(1)) ,

Ek′

21f
′(M ′) = (α′ − μ′2)f

′ (M ′(−1)) .

Here (w′1, w
′
2) = (α′, μ′1 + μ′2 − α′) is the weight

of the vector f ′(M ′) associated with a G-pattern

M ′ =
(

μ′

1 μ′

2
α′

)
and M ′(i) =

(
μ′

1 μ′

2
α′

+i

)
. Moreover,

we promise the corresponding vector f ′(M ′) is zero

if M ′(i) appearing in the above formulas violates

the conditions of G-patterns.

A principal series representation

π′ = π′(ν′, σn
′) = IndG′

P ′(1N ′ ⊗ eν′+ρ′ ⊗ σn
′),

of G′ with data ν′ = (ν′1, ν
′
2) ∈ C2 and n′ = (n′1, n

′
2)

∈ Z2 induced from the minimal parabolic sub-

group P ′ = N ′A′M ′ is defined similarly to that

of GL(3,C). In this case, the half-sum ρ′ of the

positive restricted roots is given by

eρ′

(diag (a1, a2)) =
a1

a2
, diag (a1, a2) ∈ A′.

As in the case of GL(3,C), the central character of

π′ is

ZG′ 	 ru12 
→ rν̃′

uñ′

, r ∈ R>0, u ∈ U(1),

with ν̃′ = ν′1 + ν′2 and ñ′ = n′1 + n′2, and the min-

imal K ′-type of π′ is the representation (τm′ , Vm
′)

associated with the dominant permutation m′ ∈ Λ′

of n′.

Finally, we take a non-degenerate character η′ of

N ′ defined by

η′(n(x)) = exp
(
2π
√−1Im (x)

)
.

4.2 Differential equations

Let π′ = π′(ν′, σn
′) be an irreducible principal se-

ries representation of G′ with the minimal K ′-type

(τm′ , Vm
′) associated with the dominant permuta-

tion m′ = (m′
1, m

′
2) ∈ Λ′ of n′, and let η′ be a

non-degenerate unitary character of N ′ defined in

the previous subsection.

It is well known that an element C in the center

Z(g′
C
) of the universal enveloping algebra U(g′

C
) of

g′
C

acts as a scalar on the K ′-finite vectors in π′.

Thus, each M ′-component φ(M ′) of a Whittaker

function φ ∈Wh(π′, η′, τ ′)mod which is defined sim-

ilarly to the case of GL(3,C) satisfies a differential

equation

Cφ(M ′) = χCφ(M ′)(1)

with an eigenvalue χC . The next lemma gives gen-

erators of Z(g′
C
) constructed from the Capelli ele-

ments in U(g′) via the identification of U(g′
C
) and

U(g′) ⊗C U(g′), and the eigenvalue χC of C. These

are obtained by the same way as in [4].

Lemma 2. 1. The following four elements Cp
(i)
k

in U(g′
C
) give an independent generators of

Z(g′
C
).

Cp
(1)
1 =

1

2

(
I

p′

2 + Ik′

2

)
,

Cp
(2)
1 =

1

2

(
I

p′

2 − Ik′

2

)
,

Cp
(1)
2 =

1

4

{(
E

p′

11 + Ek′

11 − 1
)(

E
p′

22 + Ek′

22 + 1
)

−
(
E

p′

12 + Ek′

12

)(
E

p′

21 + Ek′

21

)}
,

Cp
(2)
2 =

1

4

{(
E

p′

11 − Ek′

11 − 1
)(

E
p′

22 − Ek′

22 + 1
)

−
(
E

p′

12 − Ek′

12

)(
E

p′

21 − Ek′

21

)}
.

2. The eigenvalues χ
Cp

(i)
k

of the generators Cp
(i)
k

are given as follows.

χ
Cp

(1)
1

=
1

2

{
(ν′1 + n′1) + (ν′2 + n′2)

}
,

χ
Cp

(2)
1

=
1

2

{
(ν′1 − n′1) + (ν′2 + n′2)

}
,

χ
Cp

(1)
2

=
1

4
(ν′1 + n′1)(ν

′
2 + n′2),

χ
Cp

(2)
2

=
1

4
(ν′1 − n′1)(ν

′
2 − n′2).

By virtue of the Iwasawa decomposition G′ =

N ′A′K ′ of G′ and the central character of π′, we

can describe Whittaker functions as functions of a

variable

y =
a1

a2
, for diag (a1, a2) = a2 · diag (y, 1) ∈ A′.
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We denote the Euler operator with respect to y by

∂ = y
∂

∂y
.

To obtain the explicit description of the differen-

tial equation (1), we need the following fundamental

lemma.

Lemma 3. Let φ = φ(x) ∈Wh(π′, η′, τ ′)mod.

1. The actions of elements H
p′

12, and I
p′

2 in a′
C

on

φ are

H
p′

12φ = 2∂φ, I
p′

2 φ = ν̃′φ.

Thus, for E
p′

ii we have

E
p′

11φ =

(
∂ +

ν̃′

2

)
φ, E

p′

22φ

(
−∂ +

ν̃′

2

)
φ.

2. The actions of elements E
p′

12 + Ek′

12 and E
p′

21 −
Ek′

21 in n′
C

on φ are the following multiplica-

tions.(
E

p′

21 − Ek′

21

)
φ = −2πyφ,

(
E

p′

12 + Ek′

12

)
φ = 2πyφ.

Computing the actions of the generators Cp
(i)
k by

Lemma 3, we can write the differential equations (1)

explicitly as in the next proposition.

Proposition 4. Let φ(M ′) be the M ′-component

of a Whittaker function φ ∈ Wh(π′, η′, τ ′)mod and

put φ(M ′; y) = yφ̃(M ′; y). Then the differential

equations (1) for the Capelli elements C = Cp
(i)
2

with i = 1, 2 are given as follows: Let (w′1, w
′
2) =

(α′, m′
1 + m′

2 − α′) be the weight of a G-pattern

M ′ =
(

m′

1 m′

2
α′

)
.

1. For C = Cp
(1)
2 , we have[(

∂ +
ν̃′

2
+ w′1

)(
−∂ +

ν̃′

2
+ w′2

)

− (
2π
√−1

)2
y2 − (ν′1 + n′1)(ν

′
2 + n′2)

]
φ̃(M ′; y)

−4πy (α′ −m′
2) φ̃ (M ′(−1); y) = 0.

2. For C = Cp
(2)
2 , we have[(

∂ +
ν̃′

2
− w′1

)(
−∂ +

ν̃′

2
− w′2

)

− (
2π
√−1

)2
y2 − (ν′1 − n′1)(ν

′
2 − n′2)

]
φ̃(M ′; y)

−4πy (m′
1 − α′) φ̃ (M ′(1); y) = 0.

In particular, the equation for C = Cp
(2)
2 at the

G-pattern L′ =
(

m′

1 m′

2
m′

1

)
associated with the high-

est weight vector f ′(L′) in Vm
′ gives the following

differential equation for φ̃(L′).[(
∂ +

ν̃′

2
−m′

1

)(
−∂ +

ν̃′

2
−m′

2

)

− (
2π
√−1

)2
y2 − (ν′1 − n′1)(ν

′
2 − n′2)

]
φ̃(L′; y)

= 0.

If we put

λ′1 = ν′b −
ν̃′

2
, λ′2 = ν′a −

ν̃′

2

for m′ = (m′
1, m

′
2) = (n′a, n′b), then we have the

relations λ′1 + λ′2 = 0 and

(ν′1 ± n′1) (ν′2 ± n′2)

=

(
λ′2 +

ν̃′

2
±m′

1

)(
λ′1 +

ν̃′

2
±m′

2

)
,

and thus we can write the above equation for φ̃(L′)

as [
∂2 − (m′

1 −m′
2)(∂ + λ′1)

+λ′1λ
′
2 +

(
2π
√−1

)2
y2
]
φ̃(L′; y) = 0.

4.3 Explicit formula

The M ′-components of the primary Whittaker func-

tion are given as a moderate growth solution of the

differential equations in Proposition 4. The explicit

formula for them is given in the next theorem.

Theorem 5. Let W2(x) ∈ Wh(π′, η′, τ ′)mod be the

(A′-radial part of) primary Whittaker function with

the M ′-components W2(M
′; y) = yW̃2(M

′; y) for

each G-pattern M ′ =
(

m′

1 m′

2
α′

)
∈ G(m′). Then

the function W̃2(M
′; y) has the following integral

expression:

W̃2(M
′; y) =

1

2π
√−1

∫
s

V2(M
′; s)(πy)−sds

= 4(πy)AKB(2πy).

Here, the path of integration is the vertical line from

Re s − √−1∞ to Re s +
√−1∞ with enough large

real part and the integrand V2(M
′; s) is defined by

V2(M
′; s) = Γ

(
s + λ′2 + m′

1 − α′

2

)

×Γ

(
s + λ′1 + α′ −m′

2

2

)
,

and the parameters A and B are given by

A =
m′

1 −m′
2

2
, B =

λ′1 − λ′2 + w′1 − w′2
2

.

5. Propagation formula

In this section, we give an expression of Whittaker

functions on GL(3,C) in terms of those on GL(2,C),

which is an analogue of the formula obtained by

Ishii-Stade [5].

5.1 Preliminaries

─21─



Here we recall some formulas which are fundamental

in this section.

The modified Bessel function Kν(z) of the sec-

ond kind has several integral expressions. Among

them, we need two expressions: One is the integral

expression of Mellin-Barnes type

Kν(z) =
1

4
· 1

2π
√−1

×
∫

s

Γ

(
s + ν

2

)
Γ

(
s− ν

2

)(z

2

)−s

ds.

Here, the path of integration is the vertical line from

Re s − √−1∞ to Re s +
√−1∞ with enough large

real part. Another is that of Euler type

Kν(z) =
1

2
×
∫ ∞

0

exp

(−z(t + t−1)

2

)
tν

dt

t
,

which is valid only for Re z > 0.

Also we need the following integral formula so-

called Barnes’ lemma

Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)

=
1

2π
√−1

×
∫

z

Γ(z + a)Γ(z + b)Γ(−z + c)Γ(−z + d)dz.

Here the path of integration is the vertical line from

Re z − √−1∞ to Re z +
√−1∞ with enough large

real part.

5.2 Main theorem

Let π = π(ν, σn) be an irreducible principal se-

ries representation of G = GL(3,C) with data ν =

(ν1, ν2, ν3) ∈ C3 and n = (n1, n2, n3) ∈ Z3 and let η

be a non-degenerate unitary character of N defined

in §2. For simplicity, we assume that the parameter

n satisfies the regularity condition

n1 ≥ n2 ≥ n3.

Then π has the minimal K-type (τm, Vm) = (τn, Vn).

Let W3(y) ∈ Wh(π, η, τ)mod be the (primary)

Whittaker function, and for each G-pattern M =(
m1 m2 m3

α1 α2
β

)
∈ G(m) denote its M -component by

W3(M ; y) = y2
1y

2
2W̃3(M ; y). Under the regularity

condition on n, we have the parameters

(λ1, λ2, λ3) =

(
ν3 − ν̃

3
, ν1 − ν̃

3
, ν2 − ν̃

3

)
,

which appear in the integrand V3(M ; s1, s2) of the

integral expression for W̃3(M ; y) of Mellin-Barnes

type in Theorem 1.

Theorem 6. The integrand V3(M ; s1, s2) has the

following expression.

V3(M ; s1, s2)

= Γ

(
s1 + ζ

(1)
j (M)

2

)
Γ

(
s2 + ζ

(2)
j (M)

2

)

× 1

2π
√−1

∫
z

V2(M
′;−z)

×Γ

(
z + s1 + μ1

2

)
Γ

(
z + s2 + μ2

2

)
dz,

where V2(M
′; s) is the integrand of the integral ex-

pression of W̃2(M
′; y) in Theorem 5 for a triple

(π′(ν′, σn
′), η′, τm′) and a G-pattern M ′ ∈ G(m′).

The parameters and the representations are given

as follows.

1. If δ(M) ≥ 0, we have j = 2 and

μ1 = −λ2

2
+ β − α2, μ2 =

λ2

2
+ m1 − α1,

ν′ = (ν2, ν3), n′ = m′ = (m2, m3),

M ′ =
(

m2 m3
α2

)
.

2. If δ(M) ≤ 0, we have j = 1 and

μ1 = −λ1

2
+ α1 − β, μ2 =

λ1

2
+ α2 −m3,

ν′ = (ν1, ν2), n′ = m′ = (m1, m2),

M ′ =
(

m1 m2
α1

)
.

Proof. Assume δ(M) ≥ 0. Then, since ζ
(1)
1 (M) +

ζ
(2)
1 (M) = ζ

(1)
3 (M)+ ζ

(2)
3 (M), Barnes’ lemma leads

the equation

V3(M ; s1, s2)

= Γ

(
s1 + ζ

(1)
2 (M)

2

)
Γ

(
s2 + ζ

(2)
2 (M)

2

)

× 1

2π
√−1

∫
z

Γ

(−z + μ3

2

)
Γ

(−z + μ4

2

)

×Γ

(
z + s1 + μ1

2

)
Γ

(
z + s2 + μ2

2

)
dz,

where the parameters μ1 and μ2 are given in the

assertion of theorem and μ3 and μ4 are

μ3 =
−ν2 + ν3

2
+α2−m3, μ4 =

ν2 − ν3

2
−α2+m2.

Here we use the relations λ1 +
λ2

2
=
−ν2 + ν3

2
and

λ3 +
λ2

2
=

ν2 − ν3

2
.

In the case of δ(M) ≤ 0, the relation ζ
(1)
2 (M) +

ζ
(2)
2 (M) = ζ

(1)
3 (M) + ζ

(2)
3 (M) brings the assertion

by similar computation. �
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Corollary 7. We have the following expression of

W̃3(M ; y).

W̃3(M ; y) =
24

2π
√−1

∫
z

(πy1)
a1+

z

2 KA1−
z

2
(2πy1)

×(πy2)
a2+ z

2 K−A2+
z

2
(2πy2)

×V2(M
′;−z)dz.

Here

ak =
1

2

{
ζ
(k)
j (M) + μk

}
, Ak = ζ

(k)
j (M)− ak,

for k = 1, 2, and the parameters and the represen-

tations are given in Theorem 6.

Proof. Using the first integral expression of Kν(z) of

Mellin-Barnes type in §4.1, we can get the corollary

from Theorem 6 together with the integral expres-

sion of Mellin-Barnes type for W̃3(M ; y) in Theorem

1. �

Corollary 8. We have the following expression of

W̃3(M ; y).

W̃3(M ; y)

= 4πa1+a2ya1+A1
1 ya2−A2

2

×
∫ ∞

0

∫ ∞

0

uA1
1 u−A2

2

× exp

(
−π

(
y2
1u1 +

1

u1
+ y2

2u2 +
1

u2

))

×W̃2

(
M ′; πy2

√
u2

u1

)
du1

u1

du2

u2
.

Here the parameters and the representations are given

in Theorem 6.

Proof. By applying the second integral expression

of Kν(z) of Euler type in §4.1 to the expression of

W̃3(M ; y) in Corollary 7, we have

W̃3(M ; y)

=
4

2π
√−1

∫ ∞

0

∫ ∞

0

∫
z

× exp

(
−πy1

(
u1 +

1

u1

))
uA1

1

× exp

(
−πy2

(
u2 +

1

u2

))
u−A2

2

×(πy1)
a1(πy2)

a2

(
π2y1y2

u2

u1

) z

2

V2(M
′;−z)

×du1

u1

du2

u2
dz.

Then we can get the assertion by the substitutions

u1 → u1y1, u2 → u2y2, and z → −z in the above

integrals. �
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