高速空間光変調素子用電気光學ファブリ・ベロー共振器の解析

淹沢國治*

Analysis of electrooptic-crystal-based Fabry-Perot resonators for high-speed spatial light modulators

Kuniharu TAKIZAWA*

ABSTRACT: An electrooptic (EO) - crystal-based Fabry-Perot (FP) resonator, which is suitable for a high-speed spatial light modulator, is proposed. The FP resonator serves as a light modulator with an extremely low drive voltage and a high extinction ratio. It is revealed, by analyzing both the linear EO effect and the inverse piezoelectric effect of various EO crystals, that three kinds of EO crystal configurations are suitable for the FP resonator. One of these is applicable to the isotropic crystals, point group 23 and 43m, another well fits for the uniaxial EO crystals, point group 42m, 3m and 4mm, and the other fits for the biaxial crystal, point group mm2, and for the point group 3m. The EO crystals suitable for the FP resonator are as follows; ferroelectric crystals, such as LiNbO3, LiIO3, BaTiO3, and sillenite compounds, such as Bi12SiO20 and Bi12TiO20, and compound semiconductors, such as GaAs and GaP.

KEYWORDS: Electrooptic effect, Piezoelectric effect, Electrooptic crystals, Fabry-Perot resonator

(Received May 31, 2003)

1. まえがき

空間光変調素子（SLM）は、インヒビーレント光/コヒーレント光変換、波長変換、光增幅などを並列に行えるため、画像抽出の、論理演算、光画像処理、光ニューラルネットワークなどの光画像処理や高密度の投影型ディスプレイへの応用が図られている。これまでにメカチック液晶あるいは高分子分散液晶とアモルファスシリコン膜からなる液晶ライトバルブやBi12SiO20（BSO）結晶やLiNbO3結晶などの電気光学者結晶を用いたSLMなどが開発されている。

電気光学（EO）結晶を用いた代表的な空間光変調素子として、PROM（Pockels Readout Optical Modulator）MSLM（Micro-channel Spatial Light Modulator）およびPhoto-Titusなどのある。 PROMは、電気光効果と光導光効果を併せ持つBSO結晶やGaAs結晶に吸収層と透明電極を層積した非常に単純な構造をもつ。MSLMは真空管であり、その中にフォトカソード、MCP（Micro-channel plate）およびEO結晶を含む。構造は非常に複雑であるが、他のSLMにくらべて高感度である。Photo-Titusは、アモルファスセレン膜を蒸着したDKDP結晶を真空管の中に閉じ込めた構造をもつ。DKDP結晶をキュリー温度付近まで冷却して用いなければならないため、現在は使用されていない。これらのデバイスは高いコントラスト比と多彩な機能を持つが、数kVから10kVの駆動電圧を必要とするため、EO結晶ののも高密度応答特性を十分生かすことができない。そのため、液晶を用いたSLMに比べてその開発は大きく遅れている。

この論文では、平行に研磨されたEO結晶の入力端面に誘電体多層膜ミラーを蒸着したファブリ・ベロー（FP）干渉型SLMを提案する。EO結晶の1つの端面には光吸収層とホトコンダクターが積層されており、ホトコンダクターに入射する書込み光の強度に応じて、結晶に加わる交流電圧が変化する。この交流電圧の変化は結晶の屈折率の変化に置き換わり、結晶内を多重反射する読み出し光の位相を変える。このようにFP-SLMの主な機能は、従来のSLMと同様に、書き込み光の情報を読み出し光に移すことである。従来のEO結晶を用いたSLMとの明確な違いは、FP共振器の大
きな非線形特性を利用するために、従来のSLMよりも動作電圧を大幅に軽減でき、EO結晶のもつ高速応答特性を活かせる可能性を持つことである。

2章ではFP-SLMの基本構造を示し、その動作原理を等価回路で明らかにする。

3章では、FP-SLMの光変調動作を解析するため、SLMを簡略化したモデルとしてEO結晶の誘電体多層膜ミラーと透明電極を蒸着したFP共振型光変調器（FPM）を選び、多重反射光の位相差、ミラーの反射率、EO結晶の光損失などの光変調器の様なパラメータと出力光強度との関係を明らかにする。4章では、FPMに適した等軸性EO結晶と、それらを用いたFPMの構成を示す。また、変調光強度とFPMのパラメータの関係を解析するとともに、効率よく変調するのに欠かせない位相整合条件やこの条件から外れた場合のFPMの光変調特性などの計算結果を示す。5章では、FPMに適した1軸性結晶と、それらを用いた3種類の素子構成を明らかにする。これらの素子構成の位相整合条件を示すとともに、条件を満たさない場合の各素子の光変調特性を解析する。6章では、2軸性結晶のFPMへの応用の可能性について検討する。7章では4章から6章で検討したFPMの構成に適したEO結晶の半波長電圧を計算し、FP-SLMに最適な結晶構成を選び出す。

8章では、1軸性および2軸性EO結晶の位相変化に関わるEO係数と圧電定数の相対的な符号関係について考察する。9章は結論である。

2. 反射型FP—SLMの構造と動作原理

FP-SLMは、図1に示すようにEO結晶の両端に誘電体多層膜ミラーを蒸着したFP共振器とホトコンダクターで構成される。FP共振器の読出し光側とホトコンダクターの書き込み光側にはそれぞれ透明電極が蒸着されている。FP共振器とホトコンダクターの間には、読み出し光と書き込み光をアイソレートする光吸収層が挿入されている。

図2の等価回路を用いて交流電圧V_0を印加し、

\[
\begin{align*}
V_c(\text{dark}) &= \frac{V_0}{1 + \frac{C_c}{C_p}} = \frac{V_0}{1 + \frac{\varepsilon_c \rho_p}{\varepsilon_p d_c}},
\end{align*}
\]

ただし、ε_0は真空の誘電率、ρはホトコンダクターの単位面積当たりの導通抵抗である。書き込み光がない場合$R_p > > 1/\varepsilon C_p$であるから、EO結晶に印加される電圧$V_c(\text{dark})$は、式（2）で与えられる。

ここで、誘電体多層膜ミラーと光吸収層は、その両側のEO結晶とホトコンダクターよりもはるかに薄いため、無視した。

詳しく、ホトコンダクターに書き込み光が入る、その比抵抗pが大幅に低下すると、式（3）で表される電圧$V_c(\text{photo})$はEO結晶に印加される。
\[V_c(\text{photo}) = \frac{V_o}{\sqrt{1 + \left(\frac{\omega C R_p}{\rho \omega C R_p} \right)^2}} = \frac{V_o}{\sqrt{1 + \left(\frac{\varepsilon_0 \varepsilon_r \rho \omega C R_p}{d_c} \right)^2}} \]

(3)

ここで、\(\omega \) は交流電圧の角周波数、\(\rho \) は明状態のホトコンダクターの比抵抗である。ここで、

\[V_c(\text{photo}) \gg V_c(\text{dark}) \]

(4)

となるようにEO結晶とホトコンダクターの厚さおよび書込み光強度を定めれば、EO結晶に式（5）の信号電圧

\[V_s = V_c(\text{photo}) - V_c(\text{dark}) \]

(5)

が加わり、印加電圧によってFP共振器内を伝播する読み出し光の位相が変化して、読み出し光強度が変調される。読み出し光は、EO結晶の中で反射を繰り返しながら、入射光側に出力する。

3. FP型光変調器の動作解析

ホトコンダクターはEO結晶に印加される交流電圧\(V_c \)の大きさを変える可変抵抗器の役目をしている。そこで、解像度などをSLMの2次元的な性能を考えずに光変調機能だけに注目して、FP-SLMを図3に示すようにEO結晶の両端面に同じ反射率をもつ誘電体多層膜ミラーと透明電極を蒸着したFP型光変調器（FPM）に置き換えてその光変調動作を解析する。Fig.3. Multiple reflection of light in the FPM consisting of an EO crystal and dielectric multilayer film mirrors at normal incidence. The figure was drawn schematically to show each optical ray. \(L \) is the thickness of the EO crystal.

解析に先立ち、非対称な構造をもつFP-SLMを図3の対称な構造のFPMに置き換えることの妥当性を検討しておく。誘電体多層膜ミラーは、小さな屈折率\(n_b \)をもつ薄膜と大きな屈折率\(n_c \)をもつ薄膜を図4のように交互に積層したものである。

\[R = \left| 1 - \left(\frac{n_b}{n_d} \right)^{2N} \right|^2 \]

(6)

低屈折率層にSiO₂（\(n_b = 1.542 \））、高屈折率層にTiO₂（\(n_c = 2.533 \）、EO結晶をLiNbO₃（異常光屈折率：\(n_e = 2.2030 \））を用い、透明電極と光吸収層の屈折率\(n_a \)をそれぞれ1.9, 3.0として反射率\(R \)を計算すると、両者の差は\(N = 5 \)で0.5%程度になる。SLMの多層膜ミラーは一般に\(N > 5 \)であり、その場合\(n_a \)層の\(R \)に及ぼす影響は一層小さくなる。従って、FP-SLMを図3のFPMで近似して解析することは妥当である。これ以後はこのFPMの反射光について詳細に検討する。

図3に示すように、FPMに入射した光ビームは、2つの薄膜ミラーの間で多重反射し、FPMの両端面から無数のビームを出力する。この図では、入射ビームおよび無数の出射ビームは、FPMの端面とある角度をなすように模式的に描かれているが、実際のデバイスでは、全てのビームの進行方向は端面に垂直である。FPMのフィールドをF、EO結晶内をI往復するときの位相変化を\(\theta \)とすると、FPMの規格化された反射光強度\(I_R \)は次の式で与えられる。
\[I_R = \frac{a + \left(\frac{2}{\pi} F \sin \frac{\theta}{2} \right)^2}{1 + \left(\frac{2}{\pi} F \sin \frac{\theta}{2} \right)^2}. \]
(7)

ここで、\(a \) は規格化された出力光強度の最小値であり、\(\theta \) および \(F \) とともに以下の式で与えられる。

\[\theta = \frac{4\pi nL}{\lambda}. \]
(8)

\[F = \frac{\pi \sqrt{R \beta}}{1 - R \beta}. \]
(9)

\[a = R \left(\frac{1 - \beta^2}{1 - R \beta^2} \right), \]
(10)

\[\beta = \exp(-\gamma L). \]
(11)

ただし、\(n \) および \(L \) はEO結晶の屈折率と厚さ、\(\lambda \) は光の波長、\(R \) はミラーの反射率、\(\beta \) はFPMの光損失、\(\gamma \) はEO結晶の光吸収率である。

反射率 \(R \) をパラメータとしたときのFPMの \(I_R \) と位相 \(\theta \) との関係を図5に示す。この図は \(I_R \) が \(\theta \) と \(R \) に大きく依存することを示している。\(I_R \) の最大値と最小値の比を消光比 \(E_R \) とすると、\(E_R \) は次の式で表される。

\[E_R = \frac{1}{\alpha} + \frac{\left(\frac{2F}{\pi} \right)^2}{1 + \left(\frac{2F}{\pi} \right)^2}. \]
(12)

FPMの消光比 \(E_R \) と \(R \) との関係を図6に示す。この図から \(E_R \) が \(\gamma L \) に大きく依存することや、\(R \) が0.9を越すと \(E_R \) に大きな影響を与えることなどがわかる。

式 (8) より \(\theta \) は屈折率に依存するから、EO

\[I_R = \frac{a + \left(\frac{2}{\pi} F \sin \frac{\theta}{2} \right)^2}{1 + \left(\frac{2}{\pi} F \sin \frac{\theta}{2} \right)^2}. \]
(7)

Fig. 6. Relationship between extinction ratio \(E_R \) and the reflectance \(R \) for various values of \(\gamma L \).

効果を利用して屈折率を電界で制御すれば、\(I_R \)を変調することができる。例えば、外部電界で図5の原点から、A点（\(I_R \)が最大になる位相）まで、\(\theta \) を変えれば、ノーマリイプラックモード（印加電界がゼロのとき出力光強度が最小になる）動作となる。ノーマリイホワイトモード動作の場合には、位相はA点から原点まで変化する。ノーマリイプラックモードは、僅かな位相の変化で反射光強度が大きく変化するため、光変調器にとって好都合である。

反射光を利用するためには、入射光と反射光の光路を分離しないとならない。分離する2つの方法がある。1つは、図7(a)のようにハーフミラーを用いる方法である。この方法は簡単であるが75%の光が失われてしまうため、得策ではない。もう1つは、図7(b)のように偏光ビームスプリッター（PBS）とλ/4板を用いる方法である。この方
Table 1. Isotropic EO Material Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Point Group</th>
<th>EO Coefficient $r_{41} \ (pm/V)$</th>
<th>$n_0 r_{41} \ (pm/V)$</th>
<th>Refractive Index</th>
<th>Wavelength (μm)</th>
<th>Piezoelectric Strain Coefficient d_{33}</th>
<th>Relative Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$SiO$_3$</td>
<td>23</td>
<td>5.0</td>
<td>81.96</td>
<td>2.5504</td>
<td>633</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>Bi$_2$GeO$_3$</td>
<td>23</td>
<td>3.40</td>
<td>52.8</td>
<td>2.5405</td>
<td>633</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>Bi$_2$TiO$_3$</td>
<td>23</td>
<td>5.17</td>
<td>85.77</td>
<td>2.5504</td>
<td>633</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>GaAs</td>
<td>43m</td>
<td>-1.44</td>
<td>53.63</td>
<td>3.455</td>
<td>1150</td>
<td>-2.7</td>
<td>12.5</td>
</tr>
<tr>
<td>GaP</td>
<td>43m</td>
<td>-0.97</td>
<td>35.17</td>
<td>3.3098</td>
<td>633</td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>

法では、入力光として直線偏光を用いる。直線偏光はPBSを直進してλ/4板で円偏光になり、FPMの中で90度の位相差（リターデーション）をもつ2つの直線偏光として反射を繰り返す。多重反射した反射光はλ/4板で入射光と直交する直線偏光となり、PBSで直角に曲がって出射する。この場合には光損失はない。しかし、高い消光比を達成するためには、FPM内の2つの直線偏光の位相変化が等しいか、あるいは少なくともその絶対値が同一でなければならない。4章〜7章では、7(b)の構成に様なE0結晶を当てはめ、消光比を得られる結晶構成と、その光変調特性について詳細に解説する。

4. 等方性結晶を用いたFPM

等方性結晶で顕著なE0効果を示す点群は2つある。1つは点群23であり、Bi$_2$SiO$_3$, Bi$_2$GeO$_3$およびBi$_2$TiO$_3$などのシレイト（sillenite）系化合物が所属する。これらの結晶は表1に示すようなE0係数と屈折率をもつ。もう1つは点群43mであり、GaAs, GaPなどの化合物半導体がこれに含まれる。

これらの結晶の(001)面に誘電体多層膜ミラーと透明電極を積層して図8に示すようなFPMを構成する。図8のE, Sは印加電界と光の伝播方向を示している。結晶のX1軸方向に振動する電気ベクトルPをもつ直線偏光がX3軸に沿って結晶内を1往復するとき、X1[110]方向およびX3[110]方向に振動する直線偏光の位相θ1, θ2は、式（8）および表1より、以下の式で与えられる。

$$\theta_1 = \frac{4\pi}{\lambda} n_0 L + \delta \theta,$$

$$\theta_2 = \frac{4\pi}{\lambda} n_0 L - \delta \theta,$$

$$\delta \theta = \frac{2\pi}{\lambda} n_0 r_{41} V.$$

ただし、r_{41}は応力一定（constant stress）のE0係数、n_0は屈折率、Vは印加電圧である。応力一定のE0係数とは、結晶に応力が掛からない状態（free crystal）で測定したE0係数のことである。本論文では特に断らない限り、E0係数は応力一定の下で求めた値を用いることとする。

光変調器の位相がλ/2だけ変化するに必要な電圧は半波長関電圧と呼ばれ、FPMではδθ = πとなる電圧

$$V = \frac{\lambda}{2n_0 r_{41}},$$

がそれに相当する。Vは従来の光変調器の半波長電圧の半分に過ぎないが、5章で詳しく述べるようにFPMの変調特性の非線形成性、従来素子のそれによりもはるかに大きいから、非常に効率のよい変調が可能である。

式（13）、（14）より、静的位相（static phase）が

$$(4\pi/\lambda)n_0 L = 2m\pi \ (m : \text{整数})$$

となる位相整合条件を満足させることができれば、変調の動作点を図5の最小レベル点に定めることが可能となる。このとき、FPM内で繰り返し反
射する2つの直線偏光の規格化された振幅AR1、AR2は

\[AR_1 = \frac{\sqrt{R}}{2[1 - R \exp(-\gamma L + i\delta \theta)]} \]

\[AR_2 = \frac{\sqrt{R}}{2[1 - R \exp(-\gamma L - i\delta \theta)]} \]

である。互いに直交する2つの直線偏光は図7（b）のλ/4板とPBSを経て、入射光の光路から分離される。このときPBSから出力する光の強度I_Rは以下の式で与えられる。

\[I_R = R \left(\frac{1 - \exp(-\gamma L + i\delta \theta)}{1 - R \exp(-\gamma L + i\delta \theta)} + \frac{1 - \exp(-\gamma L - i\delta \theta)}{1 - R \exp(-\gamma L - i\delta \theta)} \right)^2 \]

\[= \left[\frac{\alpha + (1 + R)[(2/\pi)F \sin(\delta \theta/2)]^2/2\sqrt{R}}{1 + [(2/\pi)F \sin(\delta \theta/2)]^2} \right]^2 \]

\[\theta \text{と} I_R \text{との関係を図9に示す。パワーリフレク}

率Rが大きい場合には、図9と図5はよく似てい

\[\delta \theta \text{と} I_R \text{との関係を図9に示す。パワーリフレク}

率Rが大きい場合には、図9と図5はよく似てい
Table 2. Uniaxial EO Material Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Point Group</th>
<th>EO Coefficient (pm/V)</th>
<th>Refractive Index</th>
<th>Wavelength (nm)</th>
<th>Piezoelectric Strain Coefficient (pC/N)</th>
<th>Relative Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiTaO₃</td>
<td>3m</td>
<td>r₁₅ = +6.1</td>
<td>nₖ = 2.2868</td>
<td>633</td>
<td>d₁₅ = +16.2</td>
<td>k₃ = 28.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r₃₃ = -0.2</td>
<td>nₖ = 2.1774</td>
<td></td>
<td>d₃₃ = -3.0</td>
<td>k₃ = 53.6</td>
</tr>
<tr>
<td>Pb₂Ge₃O₁₁</td>
<td>3</td>
<td>r₁₁ = 0.276</td>
<td>nₖ = 2.1518</td>
<td>633</td>
<td>d₁₁ = 0.1</td>
<td>k₃ = 43.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r₁₅ = 10.9</td>
<td>nₖ = 2.116</td>
<td></td>
<td>d₁₅ = 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r₃₃ = 15.2</td>
<td>nₖ = 2.52</td>
<td></td>
<td>d₃₃ = 2</td>
<td></td>
</tr>
</tbody>
</table>

*Wavelength, 546 nm.

システムへの負担はないと、EO結晶の電気光学効果は小さいため、大きな直流電圧を必要とする。実際には (1) ～ (3) の方法を組み合わせて式 (21) で要請される条件の成立を図ることになるであろう。

5. 1 軸性EO結晶を用いたFPM

1 軸性結晶の中で顕著なEO効果を示す点群は 3つある。1つは点群 3m であり、最も代表的なEO結晶であるLiNbO₃およびLiTaO₃などの強誘電性結晶がこれに所属する。もう 1つは点群 42m であり、KH₂PO₄ (KDP)，KD₃PO₄ (DKDP)，(NH₄) 4H₂PO₄ (ADP)など光シャッターとしてよく用いられる結晶がこれに含まれる。最後の 1つは点群 4 mm であり、BaTiO₃などの極めて大きなEO係数を有する強誘電性結晶がこれに所属する。また、EO効果はそれほど大きくないが、LiTaO₃のように大きなピエゾ係数をもつ点群 6 でもFPMに適用できる可能性がある。これら結晶の電気光学的特性を図 2 に示す。25

結晶点群42mは表 2 に示すように、点群23や43mとよく似たEO効果のテンソル成分 r₄₁ と r₆₃を有するため、4章の計算結果をそのまま利用できる。すなわち、42mでも図 8 の構成がFPMに適しており、同図のX₁ [110]方向およびX₂ [110]方向に振動する直線偏光の位相θ₁、θ₂は、式 (13) や式 (14) で与えられる。ただし、電界によ

\[\theta = \frac{2 \pi}{\lambda} n \varepsilon_0 E \]

ここで、n₀は常光屈折率である。この結晶グループの半波長電圧 \(V \) は

\[V = \frac{\lambda}{2 n \varepsilon_0} \]

である。点群42mのEO結晶となるFPMの出力光強度は、式 (17) が成立立つ場合に式 (20) で、また不成立の場合には式 (21) で与えられる。

点群6、3 mおよび4 mmのEO結晶は符号と大きさが同一EO係数である r₃₃ と r₆₃を有するため、FPMに好適な図11の構成が可能である。同

![Fig. 11. Schematic diagram of the FPM consisting of a uniaxial EO crystal. Both the circularly polarized light and the applied electric field propagate along axis X₀. P is the electric vector of the linearly polarized light passing through the PBS shown in Fig. 7.](image-url)
図に示すように、結晶の(110)方向に振動する電気ベクトル \(\mathbf{P} \) をもつ直線偏光が \(X_3 \) 軸に沿って結晶内を1往復するととき、\(X_1 \) 軸および \(X_2 \) 軸方向に振動する電気ベクトル成分の印加電界による位相変化 \(\delta \theta_{X_1} \) と \(\delta \theta_{X_2} \) は、符号も含めて同一になり、以下の式で与えられる。

\[
\delta \theta_{X_1} = \frac{4\pi}{\lambda} \left((n_{X_1} + \Delta n_{X_1})(L + \Delta L) - n_{X_1}L\right)
\]

\[
= \frac{4\pi}{\lambda} (\Delta n_{X_1} L + n_{X_1} \Delta L),
\]

(24)

ここで \(n_{X_1} \) は \(X_1 \) 方向の屈折射率（常光屈折射率 \(n_0 \)）、\(\Delta n_{X_1} \) は \(X_1 \) 方向の \(E \) \(O \) 效果による屈折射率変化、\(\Delta L \) は逆圧電効果（Inverse piezoelectric effect）以後 \(I \) \(P \) 效果を略記する）による \(X_3 \) 方向の結晶長変化であり、それぞれ次のよう

\[n_{X_1} = n_0, \]

(25)

\[\Delta n_{X_1} = -\frac{1}{2} \frac{e_3}{n_0^2} r_{13} E, \]

(26)

\[\Delta L = d_{33} L, \]

(27)

ただし、\(d_{33} \) は圧電定数（Piezoelectric strain coefficient）である。式（25）～（27）を式（24）に代入すると、

\[
\delta \theta_{X_1} = -\frac{2\pi}{\lambda} n_0^3 V \left(r_{13} - \frac{2}{n_0^2} d_{33} \right),
\]

(28)

を得る。ここで、\(V \) は \(E \) \(O \) 結晶に加える交流電圧である。

図11のFPM、PBSおよび1/4波長板を用いて図7（b）の光学系を組合せると、PBSの出力 \(I_R \) は、式（24）を式（7）に代入することにより、

\[
I_R = \frac{\alpha + [(2/\pi) F \sin(\delta \theta_{x_1}/2)]^2}{1 + [(2/\pi) F \sin(\delta \theta_{x_1}/2)]^2},
\]

(29)

となる。ただし、前章の（1）～（3）などの方法により、予め式（17）の位相整合条件を成立させなければならない。式（29）の変調出力 \(I_R \) と \(E \) \(O \) 效果による位相 \(\delta \theta_{X_1} \) の関係を知るには、図5の横軸座標を \(\theta \) から \(\delta \theta_{X_1} \) に変更するだけでよい。

図11のFPMの半波長電圧 \(V_\pi \) は、\(\delta \theta_{X_1} = \pi \) より、

\[
V_\pi = \frac{\lambda}{2 n_0^2 r_{13} - (2/n_0^2) d_{33}},
\]

(30)

となる。4.2章でも述べたようにFPMの変調曲線（光出力対印加電圧特性）の非線形性は、従来の素子のそれよりもはるかに大きいから、わずかな印加電圧で大きな光出力を得ることができる。図12はパワー反射率 \(R = 0.9 \) の場合の規格化された

Fig. 12. Dependence of \(V/V_\pi \) of the FPDM shown in Fig. 11 with \(R = 0.9 \) and \(\gamma L = 0.001 \) on intensity \(I_0 \) of the output light.

最大透過率 \(I_R(\max) \) とそれを得るのに必要な相対印加電圧 \(V/V_\pi \) の関係を示している。この図より、\(I_R(\max) \leq 0.9 \) の場合、従来の素子に比べ格段に小さい印加電圧でよいことが分かる。また、図13は \(V/V_\pi \) と \(R \) の関係を示している。\(R > 0.85 \)

Fig. 13. Dependence of \(V/V_\pi \) of the FPDM shown in Fig. 11 with \(I_R = 0.8 \) and \(\gamma L = 0.001 \) on reflectance \(R \).

では、相対的印加電圧 \(V/V_\pi \) は従来の素子の半波長電圧の10％以下と非常に小さい。ただし図6に示したようにRが増大すると、消光比が急激に劣化するため、これをむやみに大きくすることはできない。図12および図13では \(\gamma L = 0.001 \) とした。 \(\gamma L \) を変えても図12の特性は殆ど変化せず、光損

-64-
失が印加電圧に及ぼす影響は軽微である。
次に、図11の構成で位相整合条件が不成立の場合について検討する。このときFPMの出力は以下の式で与えられる。

\[
I_R = \frac{\alpha + [(2/\pi)^2 F \sin(2m + p)\pi + \delta \theta x_1]/2]^2}{1 + [(2/\pi)^2 F \sin(2m + p)\pi + \delta \theta x_1]/2]^2},
\]

(31)

ただし、mは任意の整数、pは−1≤p≤1の範囲にあるゼロを除く実数である。図14にpを0から0.08まで変化させたときのI_Rとδθx_1の関係を示す。この図より静的位相の誤差は消光比に影響を与えないことがわかる。ただし、p≠0の場合には、バイアス電圧が必要になるため、pをできるだけ小さくすることが望ましい。

点群3 m、4 mmおよび6 mmでは、FPMとして図15の構成も可能である。この図では、X_1[100]軸を中心にX_2軸およびX_3軸をそれぞれ角度

\[
\delta \theta x_1 = \frac{4\pi\lambda}{l} [(n_{x_1} + \Delta n_{x_1})(L + \Delta L) - n_{x_1}L]
\]

\[
\delta \theta x_2 = \frac{4\pi\lambda}{l} [(n_{x_2} + \Delta n_{x_2})(L + \Delta L) - n_{x_2}L]
\]

(32)

ここでX_2方向の屈折率n_{x_2}、EO効果によるX_1およびX_2方向の屈折率変化Δn_{x_1}、Δn_{x_2}、IP効果によるX_3方向の結晶長変化ΔLは、それぞれ次のように表される。（付録1, 2）

\[
n_{x_2} = \left(\cos^2 \xi + (n_{x_2}/n_0)^2 \sin^2 \xi \right)^{1/2},
\]

(34)

\[
\Delta n_{x_1} = -\frac{n_{x_1}^3 E}{2} (r_{22} \sin \xi + r_{13} \cos \xi),
\]

(35)

\[
\Delta n_{x_2} = -\frac{n_{x_2}^3 E}{2} (-r_{22} \sin \xi \cos \xi + r_{13} \cos^2 \xi + r_{33} \sin^2 \xi \cos \xi - 2r_{31} \sin^2 \xi \cos \xi),
\]

(36)

\[
\Delta L = LE((-d_{22} \sin^2 \xi + d_{31} \sin^2 \xi \cos \xi + d_{33} \cos^3 \xi + d_{15} \sin^5 \xi \cos \xi),
\]

(37)

ここでr_{13}, r_{22}, r_{33}, r_{31}はEO係数、d_{22}, d_{31}, d_{33}, d_{15}は圧電定数である。

式 (34) ～ (37) を式 (32), (33) に代入すると、次の式を得る。

\[
\delta \theta x_1 = -\frac{2\pi}{\lambda} n_x V \left(r_{22} \sin \xi + r_{13} \cos \xi
\right.

\[
\left. - \frac{n_e}{2} (-d_{22} \sin^2 \xi + d_{31} \sin^2 \xi \cos \xi
\right)

\[
\left. + d_{33} \cos^3 \xi + d_{15} \sin^5 \xi \cos \xi \right),
\]

(38)

\[
\delta \theta x_2 = -\frac{2\pi}{\lambda} n_{x_2} V \left(-r_{22} \sin \xi \cos \xi + r_{13} \cos^3 \xi
\right.

\[
\left. + r_{33} \sin^2 \xi \cos \xi - 2r_{31} \sin^2 \xi \cos \xi
\right)

\[
\left. - \frac{2}{n_{x_2}^3} (-d_{22} \sin^2 \xi + d_{31} \sin^2 \xi \cos \xi
\right)

\[
\left. + d_{33} \cos^3 \xi + d_{15} \sin^5 \xi \cos \xi \right).
\]

(39)

表2のLiNbO_3結晶を例に取り、δθx_1, δθx_2とθとの関係を計算した。V = 1000 Vの場合を図16に示す。ここで、Vはδθx_1, δθx_2の大きさ
に関係するだけであり、Vが変わっても \(\delta \theta_{X1} = \delta \theta_{X2} \) となる。したがって、\(\xi \) の値は変わらないことに注意してほしい。

図15の2つの曲線は周期特性を示すため、
\(\xi \) の変化範囲を \(-\pi \leq \xi \leq \pi \) に限定して議論しても一般性を失わない。

図16. Dependence of electro-optically induced phase differences \(\delta \theta_{X1} \) and \(\delta \theta_{X2} \) of the FPM shown in Fig. 15 consisting of a LiNbO₃ crystal on rotation angle \(\xi \).

図15の構成のFPMの半波長電圧Vπは、以下の式で与えられる。

\[
V_{\pi} = \lambda (2n^3)^{-1} \left[r_{22} \sin \xi_0 + r_{13} \cos \xi_0 \right. \\
- \frac{2}{n^2} \left(-d_{22} \sin^2 \xi_0 + d_{31} \sin^2 \xi_0 \cos \xi_0 \right) \\
+ d_{33} \cos^2 \xi_0 + d_{15} \sin^2 \xi_0 \cos \xi_0 \bigg]^{1/4} \tag{43}
\]

式（32）～式（34）から明らかのように、X1軸方向およびX2軸方向に振動する直線偏光のとも静的位相 \(\theta_1 \) 、 \(\theta_2 \) が以下の位相整合条件を満たしなければならない。

\[
\theta_1 = \frac{4\pi}{\lambda} n_X L = 2m\pi, \tag{40}
\]

\[
\theta_2 = \frac{4\pi}{\lambda} n_X L = 2m'\pi, \tag{41}
\]

ただし、m, m' は異なる整数である。

式（40）および式（41）が成立すると、FPM の出力 I_R 是以下の式で与えられる。

\[
I_R = \frac{R}{4} \left[1 - \exp(-\gamma L + i[(2m + p)\pi + \delta]) \right. \\
- \frac{1}{-\gamma L + i(2m + p)\pi + \delta})] \\
1 - R \exp(-\gamma L + i(2m + p)\pi + \delta) \\
+ \frac{1}{-\gamma L + i(2m' + q)\pi + \delta})] \bigg] \\
+ R \exp(-\gamma L + i[(2m' + q)\pi + \delta]) \bigg] \tag{42}
\]

ここで、\(\delta \theta \) は、式（38）の \(\delta \theta_{X1} \) あるいは式（39）の \(\delta \theta_{X2} \) である。式（42）の計算結果を、図17に示す（実線）。

図17. Dependence of the intensity I_R of the output light of the FPM shown in Fig. 15 with R = 0.9 and \(\gamma L = 0.001 \) on the electro-optically induced phase difference \(\delta \theta \) for several values of p.

ただし、m は任意の整数、p, q は位相整合条件からのおずの大きさを示し、\(|p| \leq 1, |q| \leq 1 \) の範囲にあるゼロを除く実数である。R = 0.9, exp (-\gamma L)=0.0001, \(|m-m'| \leq 1 \) と \(|p-q| < 0.1 \) を同時に満たす条件を探すには、波長可変
レーザと精密な結晶回転機構が必要となるであろう。

6. 2軸性EO結晶のFPMへの可能性

顕著なEO効果を示す2軸性結晶は、斜方晶系結晶の点群mm2である。このグループの代表的なEO結晶は、表3のKNbO3、Ba2Na2Nb2O15である。29点群mm2では、r₁₃≠r₂₃であるから、図15がFPMとして唯一可能な構成である。図15のX₁方向およびX₂方向に振動する光の増幅効果をFPMに前に変化

\[\delta \theta_{X_1} = -\frac{2\pi}{\lambda} n_1^3 V\left(r_{13} \cos \xi + \frac{2}{n_1^2} [d_{32} + d_{34}] \sin^2 \xi \cos \xi + d_{33} \cos^3 \xi \right). \]

\[\delta \theta_{X_2} = -\frac{2\pi}{\lambda} n_2^3 V\left(\cos \xi [r_{23} \cos^2 \xi + (r_{33} - 2r_{42}) \sin^2 \xi \cos \xi + d_{33} \cos^3 \xi \right). \]

表3のBa2Na2Nb2O15結晶を例に取り、\(\delta \theta_{X_1} \)、\(\delta \theta_{X_2} \)と\(\xi \)との関係を計測した。V = 1000Vの場合を図18に示す。この図より\(\delta \theta_{X_1} = \delta \theta_{X_2} = 0 \)以外は、両者が一致する角度はなく、この結晶は

\[n_{X_1} = n_1, \]

\[n_{X_2} = \frac{n_2}{\cos^2 \xi + (n_{23}/n_{33}) \sin^2 \xi} \]

\[\Delta n_{X_1} = -\frac{1}{2} n_1^3 E_{13} \cos \xi, \]

\[\Delta n_{X_2} = -\frac{1}{2} n_2^3 E_{23} \cos \xi [r_{33} \cos^2 \xi + (r_{33} - 2r_{42}) \sin^2 \xi, \]

\[\Delta L = LE[(d_{32} + d_{34}) \sin^2 \xi \cos \xi + d_{33} \cos^3 \xi]. \]

ここで\(n_1, n_2, n_3 \)はX₁、X₂、X₃方向の屈折率、\(r_{13}, r_{23}, r_{33}, r_{42} \)はEO係数、\(d_{21}, d_{32}, d_{33} \)は压電定数である。

式（45）～（48）を式（32）、（33）に代入すると、次の式を得る。
FPFMには達さないことがわかる。その理由は、位相整合（δθ_x=x1=δθ_x=x2）が成立する条件を求めるとき理解できる。この条件から以下の式を得る。

\[
\cos \xi = \frac{(n_1/n_2)^3 r_{13} - r_{23} + 2 r_{24} + (d_{33} + d_{34})[(n_3 - n_1)/(n_2^n)]}{r_{23} - r_{33} + 2 r_{42}}^{1/2}.
\]

(52)

Ba_2NaNb_5O_{12}結晶のE'O係数、圧電定数、屈折率などを式（52）に代入すると、以下の式を得る。

\[
\cos \xi = \frac{(n_1/n_2)^3 r_{13} - r_{23} + 2 r_{24} + (d_{33} + d_{34})[(n_3 - n_1)/(n_2^n)]}{r_{23} - r_{33} + 2 r_{42}}^{1/2}.
\]

(53)

上式が成立するためには、(n_1/n_2)^3 r_{13} ≤ r_{23} が成立しなければならない。しかし表3が示すように、Ba_2NaNb_5O_{15}結晶ではこれは成立しない。したがって、δθ_x=x1=δθ_x=x2=0 以外は、位相整合することはなく、この結晶はFPFMには適さない。

同じ理由で、KNbO_3結晶もFPFMには適さない。位相整合条件を満たすのは、Li(COOH)H_2O (Lithium formate monohydrate)であるが、表3に示すようにそのE'O係数は小さく応用面からは魅力に乏しい。

7. FPFMに適したEO結晶の半波長電圧の比較

これまで述べた結晶点群に所属する代表的なEO結晶の半波長電圧を計算した。結果を表4に示す。ここで、δ'n(λ/V_p)は、以下の式で与えられる。

\[
\delta n = 2n_e \left[r_{22} \sin \xi_0 + r_{13} \cos \xi_0 \cos \xi_0 - \frac{2}{n_0} (d_{22} \sin^2 \xi_0 + d_{31} \sin^2 \xi_0 \cos \xi_0 + d_{33} \cos^2 \xi_0 + d_{15} \sin^2 \xi_0 \cos \xi_0) \right].
\]

(54)

表4から、LiIO_3のV_pが最も小さいことがわかる。しかし、この結晶は著解性を有するため、結晶が外気に触れないようにバックジニングが工夫が必要である。また、LiIO_3のビエゾ係数は0℃で測定された値であり、温度によってはこれが大きく変動する可能性もある。デバイス設計の前に室温でのビエゾ係数の測定が望まれる。

LiIO_3結晶に次いで小さなV_pを持つ結晶は、LiNbO_3結晶である。この結晶は電気光学特性が優れ、大型の単結晶が安価に手に入るため、最も実用的な材料である。図5の結晶構造では、FPFMの出力端面の法線と結晶のc軸とのなす角度が0°=101°であるように結晶を加工しなければならないが、総合的に見てFPFMに最も適する材料である。

これらの結晶について有望な材料は、点群42mのKD_2PO_4である。KD_2PO_4は縦型光変調素子としては古典的な材料であり、大型結晶も育てられるが、著解性があるため、LiIO_3 結晶と同じ課題を抱えている。

点群23のシレナイ化物系のBi_{12}SiO_{20}やBi_{12}GeO_{20}も有望な材料である。シレナイ化物系化合物は光導電性に基づく空間電荷効果(space-charge effect)や旋光性を有するため、これまで報

| Material | Point Group | Half-Wave Voltage (V) | |2n_e r_{33} | |2n_e r_{33} - 4n_e d_{33} | |δn | δn (deg) | Wavelength (nm) | Configuration |
|------------------|-------------|-----------------------|----------------|-----------------|-----------------|----------------|----------------|----------------|
| Bi_{12}SiO_{20} | 23 | 3800 | 166 | 111 | 633 | 8 |
| Bi_{12}GeO_{20} | 23 | 3800 | 172 | 111 | 633 | 8 |
| Bi_{12}TiO_{20} | 23 | 3800 | 119 | 111 | 633 | 8 |
| GaAs | 42m | 9600 | 9000 | 70.3 | 633 | 8 |
| KF_{12}P_{12}O_{40} | 42m | 7670 | 9000 | 70.3 | 633 | 8 |
| KDP | 42m | 9000 | 9000 | 70.3 | 633 | 8 |
| KNbO_{3} | 42m | 9000 | 9000 | 70.3 | 633 | 8 |
| PbOGe_{2}O_{11} | 3 | 4160 | 152 | 152 | 633 | 8 |
| LiIO_3 | 6 | 1040 (810) | 610 (780) | 633 | 11 |
| LiTaO_3 | 3m | 6650 (2480) | 95.2 (255) | 633 | 11 |
| LiNbO_3 | 3m | 7780 (1670) | 81.4 (378) | 633 | 11 |
| BaTiO_3 | 3m | 1510 (1870) | 418 (378) | 633 | 15 |
| Bi(COOH)H_2O | mm2 | 54,600 (145,000) | 11.6 (4.36) | 633 | 15 |

δn は Eq. (54) の。の値は円形のものを誤差計算を除いて本の関数を例示在 8
告されているEO係数の値に50%〜100%のばらつきがある。FPMを試作するためには、まずEO効果の正確な評価が必要であろう。Bi₁₂SiO₃やBi₁₂GeO₃結晶は大形で変質不均一の単結晶が比較的容易に入手できるため、FPMの有望な材料であることは間違いない。

これらの結晶に次ぐ材料としては、点群4mmのBaTiO₃結晶や点群3のPb₃Ge₂O₉結晶などがあるが、いずれも大形単結晶を育成することが困難であり、実用的でない。

点群4mmのGaAs結晶はEO係数は小さいが、大きな屈折率を有しているため、赤外線領域での応用には有望である。ただし、GaAsはGaPなどの化合物半導体は酸化物結晶に比べて抵抗が格段に小さいため、高解像度は望めないであろう。

8. EO係数q_{ij}と圧電定数d_{ij}の相対的符号

5〜7章で得られた結果は、表2、表3に掲載したEO係数および圧電定数を用いて求められた。これらの数値は、この分野のパイオルというべき文献[28]から引用されており、もっとも信頼性の高いデータである。ただし、EO係数と圧電定数間の相関的な符号関係は、筆者が測定したKH₂PO₄と(NH₄)₂H₂PO₄結晶以外は、まったく知されていない。EO効果やJI効果は古くからよく知られた物理現象であり、2つの物理定数の相関的な符号が不明確なことは奇妙なことであるが、事実である。式(24)で明らかのように、光の位相変化には2つの物理現象が独立に現れるのだが、通常の結晶方位ではEO効果の方がJP効果よりも格段に大きいため、JP効果が見落とされてしまったのだろうか。これまでの光変調素子に利用されている結晶方位では確かにJP効果は小さい。しかし、表4の解析結果が示すように、LiIO₃やLiNbO₃結晶などの1軸EO結晶を準型光変調素子として用いる場合、JP効果は印加電圧の低減にきわめて有効であり、これを無視することはできない。

2種の光学定数の相関的符号が不明なもの一つの理由として、両定数がまったく異なる方法で測定されている事実が明らかにされるのである。EO係数はMach-Zehnder干涉計やMichelson干涉計など光学的手法を用いて測定されてきた。一方、圧電定数は応力や歪によって発生する電荷の測定や、結晶に交流電圧を印加したときの共振周波数変動などを電気トロノニクス的な手法を駆使して求められた。このように2つの物理現象の測定方法は大きく異なっている。

さらに、結晶を引き伸ばす力（張力）を正とする文献と、結晶を縮める力（圧縮力）を正とする文献が混在しており、圧電定数の符号自体が複雑である。原論文に従って符号を引用する必要がある。31そこで、本章では5〜7章の解析で得たEO係数と圧電定数の相対的な符号関係をなるべく符号を用いてずれも電荷歪電圧の出力を試みた。その結果が表4の図中の数値である。表4の2つの結果を比較すると、LiTaO₃やBaTiO₃結晶などの符号関係は、結果が相対的符号に大きく左側されることがある。FPMを試作するためには、有効なEO結晶の2つの光学定数の相対的符号関係を明らかにすることが望ましい。筆者は、LiNbO₃およびLiTaO₃結晶の相対的符号測定の準備を進めている。

9. まとめ

この論文では、EO結晶を用いたFPC共振型空間光変調素子（FPM）を提案した。FPMの性能を左右するファプリ・ベロー型光変調器（FPM）の光出力と位相の関係を詳しく解析した。その結果、FPMを伝播する光の位相をEO結晶の電気光束工法によって制御すれば、従来の光変調器に要する駆動電圧の数％から10%程度の小さな電圧で大きな光出力及び高い消光比を同時に達成できることが分かった。

次に、様々なEO結晶の電気光束工法と逆圧電工法を詳細に検討し、光と印加電流の相関関係がEO結晶のX₃軸（c軸）と平行な2種類の結晶構成と、1軸性結晶のX₃軸を中心にX₂軸とX₃軸を回転させる構成がFPMに適していることを明らかにした。また、これらの結晶構成に適した等性結晶、2軸性結晶および3軸性結晶の結果を示した。このときc軸は結晶の光変調素子として用いる場合、EO効果は印加電圧の低減にきわめて有効であり、これを無視することはできない。

最後に、種々のEO結晶の半波長電圧を計算し、入出力面の勾配をc軸と101°の角度をなすように加工されたLiNbO₃結晶、Ba₁₂SO₃結晶およびGaAs結晶などがFPMに適していることを明らかにした。また、LiIO₃結晶が表1から表3に掲げた結晶の中で最も小さな半波長電圧を有することを明らかにした。室温でもこの特徴が維持される、FPMと光変調器として有効な材料である。

FPMは液晶を用いたSMLにない高速応答特性を有しているため、実時間画像処理、光コンピューティング、光ニューラルネットワークなど
多彩な分野での応用が期待される。
これらの分野に適用できるFP-SLMを実現するためには、次の研究が必要である。
① 有望なE0結晶について室温でのE0係数および圧電定数の符号を含めた精密な測定
② FP-Mの試作と光変調特性の評価（高消光比を達成するための静的位相の制御）
③ E0結晶、誘電体多層膜ミラー、光吸収膜および光導電材料を積層したFP-SLMの解像度の解析
④ FP-SLMの試作と空間光変調特性の評価
⑤ 実時間画像処理への応用
現在、①の準備に取り掛かっている。

【付録1】式（34）～（36）の導出
図15ではX3軸に沿って印加される電界EはX2軸およびX3軸方向にそれぞれ、-Esinξ，Ecosξの電界成分をもつから、屈折率格子体は以下の式で表される。

\[
\begin{align*}
\frac{1}{n_3^2} + r_{25}E \sin \xi + r_{13}E \cos \xi & \times X_2^2 \\
+ \left(\frac{1}{n_3^2} - r_{25}E \sin \xi + r_{13}E \cos \xi \right) X_3^2 \\
+ \left(\frac{1}{n_3^2} + r_{35}E \cos \xi \right) X_3^2 - 2r_{35}E \times \sin \xi X_3 X_4 = 1. \quad (A1)
\end{align*}
\]

回転前の座標X2, X3と回転後の座標X2', X3'の間には次の関係が成立する。

\[
\begin{align*}
X_2 &= X_2' \cos \xi - X_3' \sin \xi, \quad (A2) \\
X_3 &= X_2' \sin \xi + X_3' \cos \xi. \quad (A3)
\end{align*}
\]

式(A2), (A3)を式(A1)に代入すると、

\[
\begin{align*}
\frac{1}{n_3^2} + r_{25}E \sin \xi + r_{13}E \cos \xi & \times X_2^2 \\
+ \left(\frac{1}{n_3^2} \cos^2 \xi + \frac{1}{n_3^2} \sin^2 \xi - r_{25}E \sin \xi \cos^2 \xi \right) X_2'^2 \\
+ r_{13}E \cos^2 \xi + r_{35}E \sin^2 \xi \cos \xi \\
- 2r_{35}E \sin^2 \xi \cos \xi & \times X_3'^2 = 1. \quad (A4)
\end{align*}
\]

となる。式(A4)より、式(34)～(36)が得られる。

【付録2】式（37）の導出
E0結晶に電界を印加すると、E0効果とともにIP効果による歪も発生する。E0結晶の圧電定数をd_33, 結晶に印加する電界をE_mとすると、結晶に誘起される歪は、次式で与えられる。

\[
S_{i} = d_{33}E_m \quad (m=1\sim 3, i=1\sim 6). \quad (A5)
\]

点群3体制のLiNbO3結晶は、次に示す圧電定数をもつ。

\[
\begin{bmatrix}
0 & 0 & 0 & d_{15} & -2d_{22} \\
-d_{22} & d_{22} & 0 & d_{15} & 0 \\
d_{31} & d_{31} & d_{33} & 0 & 0
\end{bmatrix} \quad (A6)
\]

図15ではX3軸に沿って印加される電界EはX2軸およびX3軸方向にそれぞれ、E_2=-Esinξ, E_3=Ecosξの電界成分をもつから、式(A5)の圧電定数は次式で与えられる。

\[
S_1 = E(d_{22} \sin \xi + d_{31} \cos \xi), \quad (A7)
\]

\[
S_2 = E(-d_{22} \sin \xi + d_{31} \cos \xi), \quad (A8)
\]

\[
S_3 = Ed_{33} \cos \xi, \quad (A9)
\]

\[
S_4 = -Ed_{15} \sin \xi, \quad (A10)
\]

\[
S_5 = 0, \quad (A11)
\]

\[
S_6 = 0. \quad (A12)
\]

歪は2階テンソルであるから、E0結晶を図15に示すように、X1軸を中心にX2軸およびX3軸を角度ξだけ回転させると、回転後の歪は以下の行列の各成分で与えられる。

\[
\begin{bmatrix}
S_1 & \frac{S_5}{2} & \frac{S_5}{2} \\
\frac{S_5}{2} & S_2 & \frac{S_4}{2} \\
\frac{S_5}{2} & \frac{S_4}{2} & S_3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \xi & -\sin \xi \\
0 & \sin \xi & \cos \xi
\end{bmatrix}
\begin{bmatrix}
S_1 & \frac{S_5}{2} & \frac{S_5}{2} \\
\frac{S_5}{2} & S_2 & \frac{S_4}{2} \\
\frac{S_5}{2} & \frac{S_4}{2} & S_3
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \xi & \sin \xi \\
0 & -\sin \xi & \cos \xi
\end{bmatrix}
\]

(A13)
式（A13）より、回転後の歪の各成分は次式で与えられる。

\[
\begin{align*}
S'_1 &= S_1, \\
S'_2 &= S_2 \cos^2 \xi + S_3 \sin^2 \xi + S_4 \sin \xi \cos \xi, \\
S'_3 &= S_2 \sin^2 \xi + S_3 \cos^2 \xi - S_4 \sin \xi \cos \xi, \\
S'_4 &= 2(S_2 - S_3) \sin \xi \cos \xi + S_4 (\cos^2 \xi - \sin^2 \xi), \\
S'_5 &= S_3 \cos \xi - S_5 \sin \xi, \\
S'_6 &= S_3 \sin \xi + S_6 \cos \xi.
\end{align*}
\]

これらの歪成分の中で図15の構成で位相に影響を与えるのは、X₃軸方向の歪である。S₃は回転前への歪成分から成るから、式（A15）～（A17）を式（A9）に代入して、

\[
S'_3 = E(-d_{22} \sin^2 \xi + d_{31} \sin \xi \cos \xi + d_{33} \cos^2 \xi + d_{15} \sin \xi \cos \xi).
\]

を得る。この歪成分がX₃軸方向の結晶長を

\[
\Delta L = S'_3 L.
\]

だけ変化させる。式（A20）と（A21）より、式（37）が導かれる。

参考文献

