電気光学効果と逆圧電効果を利用した縦型光変調素子

滝沢國治^{*1} , 小林慎治^{*2} , 菊池 宏^{*3}

Longitudinal light modulators based on the electrooptic and inverse-piezoelectric effects

Kuniharu TAKIZAWA*1, Shinji KOBAYASHI*2, Hiroshi KIKUCHI*3

ABSTRACT : This paper describes novel longitudinal light modulators using LiNbO₃ single-crystal. The operation principle of the device is based on the electrooptic (EO) and inverse-piezoelectric (IP) effects. LiNbO₃ crystal is optically uniaxial and belongs to point group 3m of trigonal crystal. It has large EO coefficients r_{33} , r_{51} and a large piezoelectric constant d_{15} . It was found from the analysis of the optical phase change caused by the EO and IP effects in the LN crystal that -60.15° Z-cut structure is the most suitable for the longitudinal light modulator because three optical coefficients mentioned above are efficiently contributed to the modulation. Experimental results using several Z-cut LiNbO₃ crystals with different cut-angle supported the analytical results.

KEYWORDS : Electrooptic effect, Piezoelectric effect, LiNbO₃, Longitudinal light modulator

(Received March 22, 2004)

1.まえがき

電気光学(EO)効果は印加電界で物質の屈折率が変化 する現象であり,直流からマイクロ波領域まで及んでい るため,光変調器や光スイッチなど様々なデバイスに応 用されている。これらの素子は印加電界による光の位相 変化を干渉で光の強度変化に変える,あるいはこの位相 変化により光の伝播方向を変化させるなどの原理に基づ いている。

EO効果を利用した多くのデバイスでは,屈折率のみな らず光路長変化が位相変化に影響を与える。¹⁻⁵ すなわ ち,EO結晶は圧電性を有するため結晶に電界を加えると, 電界の大きさに比例して結晶長が変化する。これは圧電 効果(固体を押すと電荷が生じる現象)の逆の現象であ り,逆圧電(IP)効果と呼ばれる。IP効果と類似の現象 に電歪(固体の形状変化が印加電界の2乗に比例する現 象)があるが,その大きさはIP効果に比べて一般に非常 に小さいので,ここでは省略する。EO効果にも屈折率変 化が印加電界の大きさに比例する1次のEO効果(別称: ポッケルス効果)と印加電界の2乗に比例する2次のEO 効果(別称:カー効果)がある。ここでも2次のEO効果 は1次のEO効果に比べて格段に小さいため,本論文では, 2次のEO効果を省略して,1次のEO効果(以後は単に EO効果と呼ぶ)のみを取り扱うことにする。

本論に戻ろう。IP効果により生じた歪は光路長変化の ほか,光弾性効果により屈折率にも影響を与える。この 屈折率変化は歪一定状態(constant strain)のEO効果によ る屈折率変化と合わせて,応力一定状態(constant stress) のEO効果に含まれる。2つの屈折率変化に関係する光学 定数は,応力一定状態のEO係数r_{ij}^T(r_{ij}はEO係数。上付き 文字のTは応力一定状態を示す。本論文ではこれ以降添 え字Tを省略する)としてよく知られている。^{6,7}

このようにIP効果によって生じた光弾性効果はよく理解され,EO係数r_{ij}に組み込まれてきたが,不思議なことにIP効果に基づく光路長変化の効果には殆ど注意が払われなかった。この問題はこれまで報告されてきた種々のEO係数測定法を調べるとよく理解できる。

EO係数r_{ij}を精密に測定する方法として,Michelson干渉法,⁸Mach-Zehnder干渉法,⁹Senarmont法,^{7,10}反射光干

^{*&}lt;sup>1</sup> 物理情報工専攻教授(takizawa@apm.seikei.ac.jp) Professor, Department of Applied Physics)

^{*2}物理情報工学専攻大学院生 [現:富士写真フィルム(株)]

^{*3}日本放送協会放送技術研究所

渉法^{1,2,11}などが知られている。これらの計測法では試料 であるEO結晶に電界を加えることによって生じる1つ の位相変化を測定してEO係数を求めてきた。しかし,前 にも述べたように電界によって生じる位相変化には,EO 効果による屈折率変化とIP効果による結晶長変化が含ま れているため,1つの測定値から求めたEO係数r_{ij}には, 光弾性効果による圧電定数のほかに,IP効果による圧電 定数も含まれてしまう。言い換えると,これまでのEO係 数測定法では,IP効果による結晶サイズ変化をEO効果や 光弾性効果による屈折率変化に取り込んでしまっていた ことになる。

EO 効果の物理を考える場合、あるいはEO デバイスを 実際に設計する場合においてもこれは見逃せない問題で ある。特に、LiNbO₃(LN)、LiTaO₃、Bi₁₂SiO₂₀、Bi₁₂GeO₂₀、 BaTiO₃、GaAs、InP など大きな圧電定数を有する結晶あ るいは圧電定数がEO 係数と同程度の大きさを持つ結晶 では、利用する結晶方位によってはデバイス設計を大幅 に見直さなければならない。

この問題が最も顕著に現れるのは,LN 結晶を用いた縦型 光変調素子である。この素子を用いた代表的なデバイスと して MSLM(Micro-channel spatial light modulator)と呼ばれ る空間光変調素子がある。¹² MSLM には55℃ カットLN 結 晶が用いられているが,実用化されている素子の動作が設 計と大きく異なることが問題になっている。¹³ そこで本論 文では,IP 効果にも十分考慮しながら画像処理に独特の地 位を築いてきた縦型LN 光変調素子の動作解析を見直す。 第2章および第3章では,縦型LN 光変調素子のEO効果と IP 効果に基づく位相変化を解析し,縦型変調素子として最 適な結晶方位が従来と大きく異なることを明らかにする。 第4章および第5章では,解析結果に基づいて試作した縦 型変調素子の変調特性を測定し,解析結果が正しいことを 示す。第6章は結論である。

2.LN 結晶を用いた縦型光変調素子の位相変化

2.1 LN 縦型光変調素子の構造

LN 結晶を用いた縦型光変調素子は、図1に示すよう に,x₁軸を中心にして,(x₂,x₃)面を角度**q**だけ反時計 回りに回転させた新座標軸のX₃軸に光と電界を伝搬さ せる構成が一般的である。この縦型光変調素子において, i 軸方向に振動しながらX₃軸方向に進む直線偏光の位相 変化f_iは,EO効果とIP効果を考慮すれば次式で表され る。

$$f_{i} = \frac{2p}{l} (n_{i} + \Delta n_{i})(l + \Delta l)$$

$$\approx \frac{2p}{l} n_{i}l + \frac{2p}{l} \Delta n_{i}l + \frac{2p}{l} n_{i}\Delta l$$
(1)

図1 LN結晶の方位

ただし,iは1あるいは2であり, $n_i \geq \Delta n_i^{l}$ はi軸方向に 振動する直線偏光が感じる屈折率および EO 効果による 屈折率変化である。 $\ell \geq \Delta l_3^{l}$ は X₃軸方向の結晶長および IP 効果による結晶長変化である。EO 効果による屈折率 変化 Δn_i およびIP効果による結晶長変化 **D**1 は次の手順 で求められる。

2.2 <u>∆n</u>;の導出

図 1 では X_3 軸に沿って印加された電界 E は X_2 軸および X_3 軸方向にそれぞれ, -Esin q, Ecos qの電界成分をもつから,屈折率楕円体は以下の式で表される。

$$(\frac{1}{n_o^2} + r_{22}E\sin\boldsymbol{q} + r_{13}E\cos\boldsymbol{q})x_1^2 + (\frac{1}{n_o^2} - r_{22}E\sin\boldsymbol{q} + r_{13}E\cos\boldsymbol{q})x_2^2 + (\frac{1}{n_e^2} + r_{33}E\cos\boldsymbol{q})x_3^2 - 2r_{51}E\sin\boldsymbol{q}x_2x_3 = 1.$$
(2)

ここで, n_oは LN 結晶の常光線屈折率, n_oは異常光線屈折 率, *r*₂₂, *r*₁₃, *r*₃₃, *r*₅₁は EO 係数である。図1の回転前の 座標 x₁, x₂, x₃と回転後の座標 X₁, X₂, X₃の間には次の 関係が成立する。

$$x_1 = X_1$$

$$x_2 = X_2 \cos \boldsymbol{q} - X_3 \sin \boldsymbol{q}$$

$$x_3 = X_2 \sin \boldsymbol{q} + X_3 \cos \boldsymbol{q}.$$
(3)

式(3)を式(2)に代入すると,

$$\left(\frac{1}{n_o^2} + r_{22}E\sin\boldsymbol{q} + r_{13}E\cos\boldsymbol{q}\right)X_1^2 + \left(\frac{1}{n_o^2}\cos^2\boldsymbol{q} + \frac{1}{n_e^2}\sin^2\boldsymbol{q}\right)$$
$$-r_{22}E\sin\boldsymbol{q}\cdot\cos^2\boldsymbol{q} + r_{13}E\cos^3\boldsymbol{q} + r_{33}E\sin^2\boldsymbol{q}\cdot\cos\boldsymbol{q}$$
$$(4)$$
$$-2r_{51}E\sin^2\boldsymbol{q}\cdot\cos\boldsymbol{q}\right)X_2^2 = 1$$

となる。式(4)は交差項のない屈折率楕円体の形式で表されているから,これから簡単に以下の式が導かれる。

$$\Delta n_1 = -\frac{n_o^3}{2} \left(r_{22} \sin \boldsymbol{q} + r_{13} \cos \boldsymbol{q} \right) \tag{5}$$

$$\Delta n_2 = -\frac{n_{X_2}^3 E}{2} \left(-r_{22} \sin q \cos^2 q + r_{13} \cos^3 q + r_{13} \sin^2 q \cos q - 2r_{51} \sin^2 q \cos q \right)$$
(6)

$$n_{oe} = \frac{n_o}{\sqrt{\cos^2 \boldsymbol{q} + \left(\frac{n_o}{n_e}\right)^2 \sin^2 \boldsymbol{q}}}$$
(7)

2.3 △/の導出

LN 結晶のピエゾ係数を *d_{mi}*,結晶に印加する電界を *E_m* とすると, LN 結晶に誘起される歪 Si は次式で与えられ る。

$$S_i = d_{mi}E_m$$
 (m = 1 ~ 3, i = 1 ~ 6). (8)
式(8)に $E_2 = -E\sin q$, $E_3 = E\cos q$ を代入すると, 歪は次
式で与えられる。

$S_1 = E(d_{22}\sin\boldsymbol{q} + d_{31}\cos\boldsymbol{q}),$	(9)
$\mathbf{S}_2 = E(-d_{22}\sin\boldsymbol{q} + d_{31}\cos\boldsymbol{q}),$	(10)
$S_3 = Ed_{33}\cos q,$	(11)
$S_4 = -Ed_{15}\sin\boldsymbol{q},$	(12)
$S_5 = Ed_{33}\cos q,$	(13)
$S_6 = 0.$	(14)

式(9)~(14)は旧座標 x1,x2,x3における歪であるから, 図1の回転後の新座標 X₁, X₂, X₃での歪 S₁は以下の行 列の各成分で与えられる。

$$\begin{bmatrix} S_{1}^{'} & \frac{S_{6}^{'}}{2} & \frac{S_{5}^{'}}{2} \\ \frac{S_{6}^{'}}{2} & S_{2}^{'} & \frac{S_{4}^{'}}{2} \\ \frac{S_{5}^{'}}{2} & \frac{S_{4}^{'}}{2} & S_{3}^{'} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos q & -\sin q \\ 0 & \sin q & \cos q \end{bmatrix}$$

$$\begin{bmatrix} S_{1} & \frac{S_{6}}{2} & \frac{S_{5}}{2} \\ \frac{S_{6}}{2} & S_{2} & \frac{S_{4}}{2} \\ \frac{S_{5}}{2} & \frac{S_{4}}{2} & S_{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos q & \sin q \\ 0 & -\sin q & \cos q \end{bmatrix}.$$
(15)

式(15)より,回転後の歪の各成分は次式で与えられる。

$S_{1}^{'} = S_{1},$			(16)
$S_2' = S_2 \cos^2 q + S_3 \sin^2 q - S_4 \sin^2 q$	$\sin \boldsymbol{q} \cdot \cos \boldsymbol{q}$,	(17)
$\mathbf{S}_3' = S_2 \sin^2 \boldsymbol{q} + S_3 \cos^2 \boldsymbol{q} + S_4 \operatorname{s}$	$ in \mathbf{q} \cdot \cos \mathbf{q} $,	(18)
		-	(10)

- (19) $S'_{4} = 2(S_{2} - S_{3})\sin \boldsymbol{q} \cdot \cos \boldsymbol{q} + S_{4}(\cos^{2} \boldsymbol{q} - \sin^{2} \boldsymbol{q}),$
- (20) $S_5' = S_5 \cos \boldsymbol{q} + S_6 \sin \boldsymbol{q},$
- (21) $S_{6}^{'} = -S_{5}\sin q + S_{6}\cos q$.

これらの歪成分の中で図1の構成で光の位相に影響を 与えるのは, X_3 軸方向の歪 S_3 である。 S_3 は回転前の歪成 分S₂,S₃,S₄ から成るから 式(10)~(12)を式(18)に代 入して、

$$S'_{3} = E(-d_{22}\sin^{3}\boldsymbol{q} + d_{31}\sin^{2}\boldsymbol{q}\cdot\cos\boldsymbol{q} + d_{33}\cos^{3}\boldsymbol{q} - d_{15}\sin^{2}\boldsymbol{q}\cdot\cos\boldsymbol{q}).$$
(22)

を得る。この歪成分 S_3 は X_3 軸方向の結晶長 ℓ を下式のよ うに変化させる。

$$\Delta \ell = S_3^{\prime} \ell \tag{23}$$

式(5)~(7)および式(22),(23)を式(2)に代入すると, X_1 軸および X_2 軸方向に振動する直線偏光の位相 f_1 , f_2 は, 以下の式で与えられる。

$$f_{1} = \frac{pV}{l} [-n_{o}^{3}(r_{22}\sin q + r_{13}\cos q) + 2n_{o} \{-d_{22}\sin^{3}q + (d_{31} + d_{15})\sin^{2}q\cos q + d_{33}\cos^{3}q\}]$$

$$f_{2} = \frac{pV}{l} [-n_{oe}^{3}(-r_{22}\sin q\cos^{2}q + r_{13}\cos^{3}q + r_{13}\sin^{2}q\cos q)$$

$$(24)$$

$$+2n_{oe}\{-d_{22}\sin^3\boldsymbol{q}+(d_{31}+d_{15})\sin^2\boldsymbol{q}\cos\boldsymbol{q}+d_{33}\cos^3\boldsymbol{q}\}\}$$

ここで, V は LN 結晶に加える電圧 (=E / l) であ る。

式(24),(25)より,LN 結晶を通過する直線偏光の位相 変化は, EO 効果と IP 効果に大きく依存することがわか る。ただし nとn は近い値を持つため, リタデイション f=f₂-f₁では IP 効果の影響を無視しても実用上差し 支えない。

3. 解析結果

LN 結晶の圧電定数および波長1=632.8 nm で計測した ときの EO 係数を表1に示す。⁶ EO 係数同士あるいは圧電 定数同士の符号は表1に示されるように既に明らかである が, EO 係数と圧電定数の相対的な符号は不明である。そ こでここでは, EO 係数(これ以降 r_{ij}を r と略す)と圧電 定数(これ以降 d_{ji} をdと略す)の符号が一致(rd > 0と 表す), 不一致(rd < 0), および逆圧電効果を無視する場 合(d=0)の3つのケースについて, f_1 , f_2 , fと回転 角度qとの関係を計算してみよう。

表1 LN 結晶の光学定数⁷

(n = 0.02.0111)				
屈折率	EO係数 (pm/V)	圧電定数 (pC/N)		
	r ₁₃ =+9.6	d_{31} =-0.86		
$n_0 \!=\! 2.2868$	r ₂₂ =+6.8	d ₂₂ =+20.7		
$n_e\!\!=\!\!2.2030$	r ₃₃ =+30.9	d ₃₃ =+16.2		
	r ₅₁ =+32.6	d ₁₅ =+74.0		

 $(\lambda = 632.8nm)$

図2は,EO係数と圧電定数の符号が一致するケースで ある。図3は,EO係数と圧電定数の符号が不一致のケー スである。図4は全ての圧電定数をゼロと仮定した従来 の縦型光変調素子の f_i , f_2 , fと回転角度qとの関係で ある。図2~図4の印加電圧Vは,いずれも2kVであ る。これらの図を比較すると,リタデイション fはど の図も殆ど一致するが,位相 f_i , f_2 は逆圧電効果の有無 およびEO係数と圧電定数の相対的な符号関係に大きく 依存することが分かる。

これらの結果から、 f_1 、 f_2 、fの半波長電圧を求める。 半波長電圧はこれらの位相あるいは位相差を 0 から π ラ ジアンまで変化させるのに必要な最小電圧であり、縦型 光変調素子では、この値が小さいことが特に望まれてい る。図2~図4より得られる最小半波長電圧とその回転 角度qを表2にまとめて示す。

従来の EO 効果のみを考慮した場合のfiの最小半波長 電圧は,4.50 kV(q = -144.7°)であるのに対し,EO 効果と IP 効果を考慮した場合の fi の最小半波長電圧は, 2種類の定数の符号が一致する場合および不一致の場合 で,それぞれ2.88 kV(**q** = -69.5°)および2.49 kV(**q** =-141.9°)である。同様に,f2の半波長電圧は,EO効 果のみを考慮した場合は、4.31 kV(q = -123.85°)であ るのに対し, EO 効果と IP 効果を考慮した場合の最小半 波長電圧は,2種類の定数の符号が一致する場合および 不一致の場合で,それぞれ2.09 kV(q = -60.15°)およ び3.27 kV (**q** = -6.3°)である。f₁, f₂ともに半波長電 圧が大幅に減少していることがわかる。以上の結果より, 駆動電圧が最小になるのは, EO 係数と圧電定数の符号 が一致し,かつ, q=-60.15°のときであり,その条件下 での半波長電圧は,従来の縦型光変調素子に比べ50%以 下に低減することが示された。

図4 位相変化と回転角度の関係 (2kV印加時, d = 0と仮定)

対的符号	位相変化,位相差	回転角度 q (°)	半波長電圧(kV)
rd>0	f_1	-69.5	2.88
	f_2	-60.15	2.09
	f	-126.1	2.29
rd<0	f_1	-141.9	2.49
	f_2	-6.3	3.27
	f	-126.2	2.25
d=0	f_1	-144.7	4.5
	f_2	-123.9	4.31
	f	-126.1	2.27

表2 半波長電圧 と回転角度 q の関係(計算結果)

4.動作原理と測定系

前章の解析を検証するため, q= 0°, -60.6°, -82.05°, -103°, -125°, -127.2°の Z カット LN 結晶 (結晶厚ℓ=2 mm)の両研磨面に透明電極(膜厚55nm)を蒸着して,6 種類の縦型光変調素子を試作した。一例を図5に示す。 これらの光変調素子を図6のマイケルソン干渉計内部の 1つの光路に設置し,それらの変調特性を測定した。位 相変調特性の測定では,X1軸または X2軸方向に振動す る直線偏光を光変調素子に入力し,2光路を伝播するレ ーザ光の干渉光強度を光検出器で測定した。ここで,位 相変化の相対的な符号関係は印加電圧の増減に対する干 渉縞の移動方向から判断した。LN 変調素子に三角波電 圧(周波数800Hz)を加え,光検出器の出力をオシロス コープおよび FFT アナライザに入力して,半端長電圧 V_bを測定した。一方,強度変調特性の測定では,光路を 1つにするため図6のミラー1を除くとともに,光検出 器前段に検光子を置いて直交ニコル反射型光学系を構成 した。この光学系では, 偏光子と検光子の光透過軸の交 差角度は 90 度, 偏光子の光透過軸と LN 結晶の X1 軸は 45度の関係にある。ここで注意すべきことは,図6の縦 型光変調素子はレーザ光が素子内部を往復する反射型で あり,その位相変化の大きさは透過型素子(レーザ光が 素子内部を1度通過するタイプ)のそれの2倍となるこ とである。

図 5 LN 縦型光変調素子

図 6 Michelson 干渉計を利用したEO係数測定システム

5.光変調特性

図7は,V = 2kV, $\lambda = 632.8$ mの条件で得られた位 相変化f₁,f₂および位相差Df(=f₂-f₁)の回転角度q依 存性の計算結果および実験結果である。実線,点線およ び破線はf₁,f₂,fの計算結果,×,,は、それ ぞれf₁,f₂,fの実験結果である。EO係数(r)と圧 電定数(d)の相対的な符号が不明であることから,符号 が一致(rd >0),不一致(rd <0),およびIP効果を無 視 d=0)すると仮定したときの計算結果と実験結果を, 図7(a)から(c)に示す。なお,同図の実験結果は,図6 の反射型変調素子で得られた半波長電圧 $V_{rp}(=V_p/2)$ よ リ算出された透過型光変調素子の位相変化(f=pV/2 V_{rp})である。

図 7 の強度変調特性は,計算結果(実線)と実験値() がすべての仮定でよく一致している。これより強度変調 では,IP 効果を無視しても差し支えないことがわかる。 強度変調に必要な最小の *V_p*は,*q*=-125°(=55°)で2.0 kV であり,これは従来報告されている値¹³に非常に近い。

一方,位相変調特性におけるf₁とf₂の相対的な符号関係は,図7(a),(b),(c)に示されるようにq=0°,-60.6°,
 -82.05°の素子で同符号,他の素子では異符号となる実験結果が得られた。

これらのなかで rd > 0 の場合 (図 7(a))が計算結果 とよく一致した。また,図7(a),(b),(c)のq =55°に おける f_1 , f_2 の実験値をこれまで報告されている実験値 (f_1 では V_p =5.6 kV, f_2 では V_p =2.6 kV¹⁴)と比べると, 図7(a)がよく一致した。これらの事実を総合すると,図 7(a),(b),(c)では(a)が正しいと推論される。すなわち, LN 結晶においては,EO 係数と圧電定数の相対的な符号 は同一であると思われる。ただし,これはLN 結晶を用い た縦型光変調素子の変調特性から得られた間接的な結果 であり,両定数の相対的な符号関係を直接測定すること が望ましい。これは今後の課題である。 縦型 LN 光変調素子の最小 V_p は両定数が同符号のと きの位相変化 f_2 で生じ,その値はq = -60.6°で1.92 kV であった。この値は,これまで最も効率的な変調ができ ると考えられてきたd = 0の場合(図7(c))におけるq= 55°の計算値4.32 kV に比べて1/2 以下であった。

これらの結果は,式(23)および式(24)において,LN 結晶のもつ大きな圧電定数 d₁₅がEO係数に対して対等あ るいはそれ以上の大きさを有するためと考察される。本 章の実験結果は,本論文で提案する動作解析モデルが正 しいこと,およびIP効果を利用すれば従来EO効果のみ で設計された光変調素子の駆動電圧を大幅に低減できる ことを示している。

図7 LN縦型光変調素子の位相変化と回転角度の関係 計算結果(実線、点線、破線)と実験結果(×、 、)の比較

6.むすび

LN 結晶を用いた縦型光変調素子の EO 効果と IP 効果 に基づく光変調特性を解析するとともに,結晶方位の異 なるいくつかの縦型 LN 変調素子を試作し,それらの光 変調特性を実験した。その結果,位相変調には IP 効果が 大きく作用していることが判明した。また,LN 結晶の EO 係数と圧電定数の相対的な符号関係は一致しており, 位相変調時の最小半波長電圧は,最適回転角度 q = -60.6°において1.92 kV であった。この値は従来の位相 変調時の半波長電圧の50%以下であり,IP 効果を考慮し た素子設計を行えば印加電圧を大幅に軽減できることが 明らかになった。

今回の結果は LN 結晶に留まらない。LN 結晶と同じ三 方晶系の点群 3 mに所属する LiTaO₃ 結晶,正方晶系の点 群 4 mm の BaTiO₃ 結晶,立方晶系の点群 23 の Bi₁₂SiO₂₀ や Bi₁₂GeO₂₀ 結晶,立方晶系の点群 43m の GaAs や InP 結晶など大きな圧電定数を有する結晶,あるいは圧電定 数が EO 係数と同程度の大きさを持つ結晶を用いて位相 変調素子を設計する場合には,IP 効果を十分考慮しなけ ればならない。

参考文献

- K. Takizawa and M. Okada, "Simple method for measuring electro-optic coefficients by detecting the interference signal between transmitted and reflected beams," J. Opt. Soc. Am. 72, 809-811 (1982).
- 2 K. Takizawa and M. Okada, "Determination of relative signs of electro-optic and piezoelectric coefficients by measuring optical phase shifts by an applied electric field," J. Opt. Soc. Am. B 2, 289-293 (1985).
- 3 K. Takizawa, "Analysis of electro-optic crystal-based Fabry-Perot etalons for high-speed spatial light modulators," Appl. Opt. 42, 1052-1067 (2003).
- 4.小林慎治,菊池 宏,滝沢國治,「ポッケルス効果と
 逆圧電効果を利用した縦型光変調素子の設計」 信
 学論 C, J86-C, 83-85 (2003).
- 5. 菊池 宏,小林慎治, 滝沢國治,「ポッケルス効果と 逆圧電効果に基づく縦型光変調素子の解析と実験的 検証」 信学論 C, J87-C, 276-277 (2004).
- 6 K. -H. Hellwege, Editor in chief, LANDOLT BÖRNSTEIN, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Vol.11, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric

Susceptibilities of Crystals (Springer-Verlag Berlin, Heidelberg, New York 1979) pp.287-670.

- 7 R. Carpenter, "The electro-optic effect in uniaxial crystals of the dihydrogen phosphate type. III. Measurement of coefficients," J. Opt. Soc. Am. 40, 225-229 (1950).
- 8 . K. Onuki, N. Uchida and T. Saku, "Interferometric method for measuring electro-optic coefficients in crystals," J. Opt. Soc. Am., 62, 1030 (1972).
- 9 J. Zook, D. Chen and G. Otto, "Temperature dependence and model of the electro-optic effect on LiNbO₃," Appl. Phys. Lett., **11**, 159 (1967).
- S. Namba, "Electro-optic effect of zincblende," J. Opt. Soc. Am., **51**, 76-79 (1961).
- 11. 滝沢國治,横田雄二,石山 遥,花岡秀典,「多重反射 光干渉法による電気光学係数の高精度測定」第51回応 用物理学関係連合講演会予稿集,31pZV4 (2004).
- 12. T. Hara, Y. Ooi, Y. Suzuki, and M. H. Wu, "Transfer characteristics of the microchannel spatial light modulator," Appl. Opt. 28, 4781-4786 (1989).
- T. Hara and Y. Suzuki, "Microchannel spatial light modulator," Optoelectronics -Devices and Technologies 10, 393-420 (1995).
- 14.原勉,信学論 (C-I), J.76-C-I, 41-45 (1991).