等方性および1軸性電気光学結晶の 電気光学効果と逆圧電効果の解析

滝沢 國治*

Analysis of electro-optic and inverse-piezoelectric effects in isotropic and uniaxial electro-optic crystals

Kuniharu TAKIZAWA*

ABSTRACT: Conventional electro-optic (EO) devices have been designed based on only the EO effect, and the inverse-piezoelectric (IP) effect has been ignored. In the case of bulk EO devices that control the retardation between the ordinary ray and the extraordinary ray, there is hardly any problem in defiance of the IP effect. However, for waveguide devices which control only the ordinary or extraordinary ray, the longitudinal IP effect that changes the optical path length in the EO crystal is important as well as the EO effect. In this paper, electro-optically induced phase shifts of light propagating in isotropic and uniaxial EO crystals are analyzed in consideration of both of the EO and IP effects. Various crystal configurations are summarized with particular attention to optical communication and optical image processing applications.

KEYWORDS : Electro-optic effect, Pockels effect, Piezoelectric effect, Electro-optic crystal, Isotropic crystal, Uniaxial crystal

(Received September 6, 2004)

1.まえがき

電気光学効果は,結晶の屈折率が印加電界によっ て変化する現象であり,直流からマイクロ波周波数 まで応答するため,光変調器や光偏向器などによく 用いられている。電気光学効果には,屈折率が印加 電界に比例する1次の効果(Pockels 効果)と,印 加電界の2乗に比例する2次の効果(Kerr 効果)が ある。Kerr 効果は全ての材料に存在するのに対し, Pockels 効果は反像対象性(結晶中のある点からr の位置の原子を-rに移すと元の結晶構造と一致する 性質)を欠く結晶にのみ存在する。一般的にKerr 効 果は Pockels 効果よりも格段に小さいため,反像対 象性の無い結晶では、Pockels効果だけに着目すれば 十分である。この論文では光エレクトロニクス応用 で重要である、半像対称性を欠く電気光学結晶に限 定して、議論を進めることとする。

光エレクトロニクスで用いられる各種の電気光学 デバイスは印加電界による光の位相変化を干渉を利 用して光の強度変化に変える,あるいはこの位相変 化により光の伝搬方向を変化させるなどの原理に基 づいているが,素子構成によっては屈折率変化のみ ならず光路長変化が位相変化に影響を与える場合が ある。¹⁻⁷すなわち,電気光学結晶は圧電性を有する ため,結晶に電界を加えると電界の大きさに比例し て結晶中に伸びおよび縮みなどの歪が生じる。これ は圧電効果(固体に力を加えると電荷が生じる)の 逆の現象であり,逆圧電効果と呼ばれる。この効果 と類似の現象に電歪(固体の形状の変化が電界の2

^{*} 物理情報工学科教授 (takizawa@apm.seikei.ac.jp) Professor, Department of Applied Physics

乗に比例する)があるが,その大きさは逆圧電効果 に比べて一般に非常に小さいため,ここでは省略す る。逆圧電効果により生じた歪は光弾性効果により 屈折率に影響を与えるほか,光路長も変化させる。

従来,この逆圧電効果に基づく光路長変化にはほ とんど注意が払われていなかった。たとえば Michelson 干渉計や Mach-Zehnder 干渉計などを用 いて光の位相変化の計測から結晶の電気光学係数を 評価する場合,これまでは逆圧電効果に基づく位相 変化を電気光学効果に基づく位相変化に含めて低周 波領域の電気光学係数を求めていた。^{8,9} 電気光学 効果の機構を考察する場合,あるいは実際の素子設 計においてもこのような取扱いは問題である。特に 薄膜光導波形デバイスでは光の位相変化を直接利用 している場合が多く,逆圧電効果に基づく光路長変 化の考慮は素子設計上必要である。

この論文では,等軸性および一軸性結晶の電気光 学効果に基づく屈折率変化および逆電圧効果に基づ く歪テンソルの変化を解析する。この中でも光デバ イスへの応用上特に重要と考えられる幾つかの点群 に属する結晶について,印加電界方向と光の位相変 化の関係を明らかにする。さらに,印加電界による屈折 率変化と光路長変化から求められる実効的電気光学係数 を示すとともに,素子設計および電気光学係数の測定に おいて従来見落とされていた幾つかの問題点を指摘する。

2.結晶透過光の印加電界による位相変化

電気光学結晶に電界を加えると,電気光学効果に よりその屈折率が変化すると共に,逆圧電効果によ り結晶長が変化する。従って,応力一定の状態にあ る結晶に電界を印加する場合,透過光の印加電界に よる位相変化 は,

$$= \frac{2}{2} \left[(n + \Delta n)(l + \Delta l) - nl \right] \cong \frac{2}{2} \left(\Delta nl + n\Delta l \right)$$
(1)

で与えられる。ただし は真空中の光の波長, nお よび ℓ は電界を加えないときの結晶の屈折率および 光路長である。 nは電気光学効果に基づく屈折率 変化であり, ℓ は逆圧電効果に基づく光路長変化 である。n, nおよび ℓ は結晶の対称性,印加 電界方向および光の伝搬方向に依存する。

以下では,はじめに結晶に電界を加えたときの屈 折率楕円体と歪の一般式を求める。次に等軸性およ び一軸性結晶の幾つかの点群において,光デバイス への応用上重要と思われる素子構成とそこを伝播す る光の位相変化の関係を明らかにする。

3.屈折率楕円体の係数と印加電界の関係

結晶に電界を加えると電気光学効果および光弾性 効果により屈折率および主軸方向が変化する。結晶 中での光の伝搬特性は屈折率楕円体により完全に記 述することができるから,電界を印加したときの屈 折率楕円体の係数の変化を求めれば,屈折率変化を 明らかにすることができる。

等軸性および一軸性結晶の結晶軸 m(m=1, 2, 3) にそって電界 mを印加すると,屈折楕円体は一般に

$$\left(\frac{1}{n_1^2} + r_{1m} E_m\right) X_1^2 + \left(\frac{1}{n_2^2} + r_{2m} E_m\right) X_2^2 + \left(\frac{1}{n_3^2} + r_{3m} E_m\right) X_3^2 + 2r_{4m} E_m X_2 X_3 + 2r_{5m} E_m X_1 X_3 + 2r_{6m} E_m X_1 X_2 = 1.$$

$$(2)$$

で与えられる。ただし,三方晶系および六方晶系は 斜方晶系で表されるものとする。 n_1 , n_2 , n_3 は印 加電界が0のときの結晶軸 1, 2, 3方向の屈折 率である。 $r_{1m} \sim r_{6m}$ は応力一定の状態にある結晶の 電気光学係数であり,歪一定の状態にある結晶の電 気光学係数に圧電定数と光弾性定数の積を加えた定 数である。

また, $r_{im}E_m$ は Einstein summation convention に 従っており,以下の式と同等である。

$$r_{im} E_m = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \\ r_{41} & r_{42} & r_{43} \\ r_{51} & r_{52} & r_{53} \\ r_{61} & r_{62} & r_{63} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}$$
(3)

式(2)を下式に示すような形に主軸変換すると、電 界を印加したときの結晶の屈折率 n'_1 , n'_2 , n'_3 およ び主軸方向 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$ を求めることができる。

$$\frac{X_{1}^{'2}}{n_{1}^{'2}} + \frac{X_{2}^{'2}}{n_{2}^{'2}} + \frac{X_{3}^{'2}}{n_{3}^{'2}} = 1$$
(4)

式(2)から式(4)に厳密に変換できる場合は少ないが,多くの場合,結晶中の光の伝搬方向を選択する

ことにより,式(4)の座標軸の一つを0にした楕円の 式に変換して屈折率を求めることが可能である。例 えば, 3を光軸とする一軸性結晶の結晶軸 mに平 行に電界を加え,光の進行方向を _i(i=1,2)に平行 にすると,電気光学係数 rim で表される屈折率変化 を容易に求めることができる。しかし, r_{4m}, r_{5m}, r_{6m}等の係数で表される屈折率変化を知るためには, 式(2)で表される屈折率楕円体を座標変換し、 ジ゙シ, ☆ ☆, ☆ ☆ などの交差項を消去できる新しい座 標軸 1, 2, 3を求めなければならない。ここで は直交座標軸 1, 2, 3をその原点のまわりに任 意の角度に回転して得られる新座標軸 1, 2, 3 を用いて屈折率楕円体を表し,その交差項成分が0 になる回転角度、あるいはその成分を無視できる角 度を求めることにより,等軸性および一軸性結晶の 印加電界による屈折率変化を解析する。

初めに直交座標系の変換を次のように行う。まず, 図 1(a)に示すように 3を軸として角度 だけ 3に 垂直な面を回転すると,別の座標軸 x1,x2, 3が得 られる。

次に同図(b)に示すように x₂を軸として, x₂に垂直 な面を角度 だけ回転すると,さらに別の座標軸 '1, x₂, x₃が得られる。さらに,同図(c)に示すように '1 を軸として '1に垂直な面を角度 だけ回転すると, 原点 0 のまわりに任意の角度に回転した新しい座標 '1, '2, '3が得られる。新座標軸と旧座標軸 1,

結晶の屈折率は光の伝搬方向と光電界の振動方向 に依存するため,任意の方向の屈折率を求めるため には式(5)に示す,, で表される3個の独立な 回転角度が必要である。式(5)を式(2)に代入して交 差項を消去できる角度を求めれば,電界を印加した ときの結晶の屈折率を導出することができる。

新座標軸を用いて式(2)の屈折率楕円体を

$$A_{1}X_{1}^{'2} + A_{2}X_{2}^{'2} + A_{3}X_{3}^{'2} + A_{4}X_{2}X_{3} + A_{5}X_{1}X_{3} + A_{6}X_{1}X_{2} = 1$$
(6)

と書き改めると,係数 Ái は次式で与えられる。

$$A_{1} = \cos^{2} \mathbf{x} \left(\frac{\cos^{2} \mathbf{y}}{n_{1}^{2}} + \frac{\cos^{2} \mathbf{y}}{n_{2}^{2}} \right) + \frac{\sin^{2} \mathbf{x}}{n_{3}^{2}}$$

$$+ [\cos^{2} \mathbf{x} (r_{1m} \cos^{2} \mathbf{y} + r_{2m} \sin^{2} \mathbf{y} + r_{6m} \sin^{2} \mathbf{y})$$

$$+ r_{3m} \sin^{2} \mathbf{x} - \sin^{2} \mathbf{x} (r_{4m} \sin \mathbf{y} + r_{5m} \cos \mathbf{y})] E_{m},$$

$$A_{2} = \frac{1}{n_{1}^{2}} \left(\cos^{2} \mathbf{h} \sin^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \cos^{2} \mathbf{y} - \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{2}^{2}} \left(\cos^{2} \mathbf{h} \cos^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{2}^{2}} \left(\cos^{2} \mathbf{h} \cos^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{2}^{2}} \sin^{2} \mathbf{h} \cos^{2} \mathbf{x} + \left[r_{1m} \left(\cos^{2} \mathbf{h} \sin^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{3}^{2}} \sin^{2} \mathbf{h} \cos^{2} \mathbf{x} + \left[r_{1m} \left(\cos^{2} \mathbf{h} \cos^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{3}^{2}} \sin^{2} \mathbf{h} \cos^{2} \mathbf{x} + \left[r_{1m} \left(\cos^{2} \mathbf{h} \cos^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{3}^{2}} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y}$$

$$+ \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right) + r_{5m} (\sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \cos^{2} \mathbf{y} - \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ r_{6m} (\sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \cos^{2} \mathbf{y} + \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{1}^{2}} \left(\sin^{2} \mathbf{h} \sin^{2} \mathbf{y} + \cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \cos^{2} \mathbf{y} + \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{n_{3}^{2}} \cos^{2} \mathbf{h} \cos^{2} \mathbf{x} + \left[r_{1m} \left(\sin^{2} \mathbf{h} \sin^{2} \mathbf{y} + \cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \cos^{2} \mathbf{y} \right]$$

$$+ \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + r_{2m} (\sin^{2} \mathbf{h} \cos^{2} \mathbf{y} + \cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + r_{3m} \cos^{2} \mathbf{h} \cos^{2} \mathbf{x} + r_{4m} (\cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ \frac{1}{2} \sin^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + r_{5m} (\cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + r_{5m} (\cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} \right)$$

$$+ r_{5m} (\cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y} + r_{5m} (\cos^{2} \mathbf{h} \sin^{2} \mathbf{x} \sin^{2} \mathbf{y}$$

$$A_{4} = \frac{1}{n_{1}^{2}} (\sin 2h\sin^{2}x\cos^{2}y - \sin 2h\sin^{2}y - \cos 2h\sin x\sin 2y)$$

$$+ \frac{1}{n_{2}^{2}} (\sin 2h\sin^{2}x\sin^{2}y + \cos 2h\sin x\sin 2y - \sin 2h\cos^{2}y)$$

$$+ \frac{1}{n_{2}^{2}} (\sin 2h\sin^{2}x\sin^{2}y + \cos 2h\sin x\sin 2y - \sin 2h\sin^{2}y$$

$$+ \frac{1}{n_{3}^{2}} (\sin 2h\cos^{2}x + [r_{1m}(\sin 2h\sin^{2}x\cos^{2}y - \sin 2h\sin^{2}y - (7d) - \cos 2h\sin x\sin 2y + r_{2m}(\sin 2h\sin^{2}x\sin^{2}y - \sin 2h\cos^{2}y + \cos 2h\sin x\sin 2y + r_{2m}(\sin 2h\sin^{2}x\sin^{2}y - \sin 2h\cos^{2}y) + r_{5m}(\sin 2h\sin^{2}x\sin^{2}y - 2\cos 2h\cos x\sin y)$$

$$+ r_{6m}(\sin 2h\sin 2y + \sin 2h\sin^{2}x\sin 2y + 2\cos 2h\sin x\cos 2y)]E_{m},$$

$$A_{5} = \frac{1}{n_{1}^{2}} (\sinh \cos x\sin 2y + \cosh \sin 2x\cos^{2}y) + \frac{1}{n_{2}^{2}} (\cosh \sin 2x\sin^{2}y - \frac{1}{n_{3}^{2}} \cosh \sin 2x + [r_{1m}(\sinh \cos x\sin 2y) - \frac{1}{n_{3}^{2}} \cosh \sin 2x + [r_{1m}(\sinh \cos x\sin 2y) - \frac{1}{r_{5m}}(\cosh \sin 2x \cos^{2}y) + r_{5m}(\cosh \sin 2x \sin^{2}y - \sin h\cos x\sin 2y)$$

$$+ 2r_{5m}(\cosh \cos 2x \cos y - \sinh \sin 2x \sin^{2}y) - \frac{1}{n_{2}^{2}} (\cosh h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)$$

$$+ \frac{1}{n_{2}^{2}} (\cosh h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)$$

$$+ \frac{1}{n_{2}^{2}} (\cosh h \sin 2x + [r_{1m}(\sin h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y))$$

$$+ \frac{1}{n_{3}^{2}} \sin h \sin 2x + [r_{1m}(\sin h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)]$$

$$+ \frac{1}{n_{3}^{2}} \sin h \sin 2x + [r_{1m}(\sin h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)]$$

$$+ \frac{1}{n_{3}^{2}} (\cosh \cos x \sin 2y + \sinh \sin 2x \sin^{2}y) - r_{3m} \sin h \sin 2x + [r_{1m}(\sin h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)]$$

$$+ \frac{1}{n_{3}^{2}} (\cosh \cos x \sin 2y + \sinh h \sin 2x \sin^{2}y) - r_{3m} \sin h \sin 2x + [r_{1m}(\sin h \sin 2x \cos^{2}y - \cosh \cos x \sin 2y)]$$

$$+2r_{5m}(\cos h \sin x \sin y + \sin h \cos 2x \cos y)$$

 $+r_{6m}(2\cos h\cos x\cos 2y + \sin h\sin 2x\sin 2y)]E_m.$

4.結晶の歪変化と印加電界の関係

圧電性結晶に電界を印加すると歪が発生する。結 晶が応力一定の状態にあるとき,結晶軸X_mと平行 に電界 *E_mを*加えると,歪テンソル*S_{ij}*は

$$S_{ij} = d_{mij} E_m \tag{8}$$

で与えられる。ここで d_{mij} は圧電定数である。 $\mathbb{E}S_{ij}$ は対称 2 階テンソル,圧電定数 d_{mij} は対称 3 階テンソルであるから,

 $S_k = d_{mk} E_m \tag{9}$

という簡略した表記法で表すことができる。この簡 略した添字 k と式(8)の完全な表記法の ij の間には, 表1の関係が成立する。

表1 完全表記法と簡略表記法の関係

完全表記法	ij	11	22	33	23	32	31	13	12	21
	♦	♦	♦	↓	♦	↓	↓	∳	♦	♦
簡略表記法	k	1	2	3	4	4	5	5	6	6

既に登場した電気光学係数 r_{ij} は簡略表記法に従って記述されている。 歪および圧電定数はしばらくの間完全表記法に従って記述し,電気光学効果と合わせて光の位相変化を記述する際に,簡略表記法で統一することとする。

図 1(a)に示す座標変換を結晶に施すと ,*S_{ij}* は次式 に示す*S'_{ii}* に変換される。

$$\begin{bmatrix} S_{11}' & S_{12}' & S_{13}' \\ S_{21}' & S_{22}' & S_{23}' \\ S_{31}' & S_{32}' & S_{33}' \end{bmatrix} = \begin{bmatrix} \cos \mathbf{j} & \sin \mathbf{y} & 0 \\ -\sin \mathbf{y} & \cos \mathbf{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$
(10)
$$\cdot \begin{bmatrix} \cos \mathbf{y} & -\sin \mathbf{y} & 0 \\ \sin \mathbf{y} & \cos \mathbf{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

式(10)の右辺を演算すると歪の各成分は次のようになる。

$$S_{11} = S_{11} \cos^2 \mathbf{y} + S_{22} \sin^2 \mathbf{y} + S_{12} \sin 2\mathbf{y},$$
 (11a)

$$\dot{S}_{12} = \dot{S}_{21} = S_{12} \cos 2\mathbf{y} + \frac{1}{2}(S_{22} - S_{11})\sin 2\mathbf{y},$$
 (11b)

$$S'_{13} = S'_{31} = S_{13}\cos y + S_{23}\sin y,$$
 (11c)

$$S'_{22} = S_{11}\sin^2 y + S_{22}\cos^2 y - S_{12}\sin 2y,$$
 (11d)

$$S'_{23} = S'_{32} = S_{23} \cos y - S_{13} \sin y,$$
 (11e)

$$S'_{33} = S_{33}.$$
 (11f)

次に図 1(b)に示す座標変換を結晶に施すと, 歪テ ンソル成分*S*["]_{ii} は次式で与えられる。

$$S_{11}^{"} = S_{11}^{'} \cos^2 \mathbf{x} + S_{33}^{'} \sin^2 \mathbf{x} - S_{13}^{'} \sin 2\mathbf{x}, \quad (12a)$$

$$S_{12}^{"} = S_{21}^{"} = S_{12}^{'} \cos \mathbf{x} - S_{22}^{'} \sin \mathbf{x}, \quad (12b)$$

$$\mathbf{y}_{12} = \mathbf{y}_{21} = \mathbf{y}_{12} \cos \mathbf{x} = \mathbf{y}_{23} \sin \mathbf{x}, \qquad (120)$$

$$S_{13} = S_{31} = S_{13} \cos 2\mathbf{x} + \frac{1}{2}(S_{11} - S_{33})\sin 2\mathbf{x}, (12c)$$

$$S_{22}^{"} = S_{22}^{'}, (12d)$$

$$S_{23}^{22} = S_{32}^{22} = S_{12}^{2} \sin \mathbf{x} + S_{23}^{2} \cos \mathbf{x}, \qquad (12e)$$

$$S_{33}^{''} = S_{11}^{'} \sin^2 x + S_{33}^{'} \cos^2 x + S_{13}^{'} \sin 2x$$
. (12f)

さらに図 1(c)に示す座標変換を結晶に施すと, 歪テ ンソル成分*S^{''}*は次式で与えられる。

$$S_{11}^{""} = S_{11}^{"} \tag{13a}$$

$$S_{12}^{""} = S_{21}^{""} = S_{12}^{"} \cos \mathbf{h} + S_{13}^{"} \sin \mathbf{h}, \qquad (13b)$$

$$S_{13}^{""} = S_{31}^{""} = S_{13}^{"} \cos \mathbf{h} - S_{12}^{"} \sin \mathbf{h}, \qquad (13c)$$

$$S_{22} = S_{22} \cos^2 \mathbf{n} + S_{33} \sin^2 \mathbf{n} + S_{23} \sin^2 \mathbf{n}, \quad (150)$$

$$S_{23}^{""} = S_{32}^{""} = S_{23}^{"} \cos 2\mathbf{h} + \frac{1}{2}(S_{33}^{"} - S_{22}^{"})\sin 2\mathbf{h}, \quad (13e)$$

$$S_{33}^{""} = S_{33}^{"} \cos^2 \mathbf{h} + S_{22}^{"} \sin^2 \mathbf{h} - S_{23}^{"} \sin 2\mathbf{h}.$$
(13f)

式(8),式(11),式(12)および式(13)を用い れば X[′]_i(i=1,2,3)方向の単位長あたりの結 晶長変化 S[‴]_{ii}を求めることができるから,

$$\Delta \ell = S_{ii}^{\prime\prime\prime} \ell \tag{14}$$

より逆圧電効果に基づく光路長変化を導くことが出 来る。ただし, ℓは光の進行方向の電界を印加しな いときの結晶長である。

5.等軸性結晶を透過する光の印加電界による 位相変化

前節までの解析で結晶に電界を印加したときの屈 折率変化および歪テンソルの変化の一般式を導出し た。ここでは5種類の等軸性結晶(対称性:23,432, m3,43*m*,m3m)の中で電気光学効果(Pockels効 果)を有する立方晶系(対称性:23,43*m*)に電界を 印加したとき,結晶透過光の位相変化を明らかにする。

立方晶系結晶の屈折率は, n₁ = n₂ = n₃ = n₀ (n₀ は 常光線屈折率)であり, その電気光学係数 r_{ii}は,

$$r_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{41} & 0 & 0 \\ 0 & r_{41} & 0 \\ 0 & 0 & r_{41} \end{pmatrix}$$
(15)

である。従って,式(15)を式(7)に代入し,交差項係 数 *Á*₄,*Á*₅,*Á*₆が0になるように回転角度,, を設定すれば,次の立方晶系結晶の屈折率を得る。

$$n_1 = n_0 + \frac{1}{2} n_0^3 E_m r_{41} \left(\sin 2\mathbf{x} \sin \mathbf{y} + \sin 2\mathbf{x} \cos \mathbf{y} - \cos^2 \mathbf{x} \sin 2\mathbf{y} \right), (16a)$$

$$n_{2}' = n_{0} - \frac{1}{2} n_{0}^{3} E_{m} r_{41} \begin{pmatrix} \sin^{2} h \sin 2x \sin y \\ + \sin 2h \cos x \cos y \\ + \sin^{2} h \sin 2x \cos y \\ - \sin 2h \cos x \sin y \\ + \sin^{2} h \sin^{2} x \sin 2y \\ + \sin^{2} h \sin^{2} x \sin 2y \\ - \cos^{2} h \sin 2y \end{pmatrix} (16b)$$

$$n_{3}' = n_{0} - \frac{1}{2} n_{0}^{3} E_{m} r_{41} \begin{pmatrix} \cos^{2} h \sin 2x \sin y \\ - \sin 2h \cos x \cos y \\ + \cos^{2} h \sin 2x \cos y \\ + \sin 2h \cos x \cos y \\ + \sin 2h \cos x \sin y \\ + \sin^{2} h \sin^{2} x \sin 2y \\ - \sin^{2} h \sin^{2} x \sin 2y \\ - \sin^{2} h \sin x \cos 2y \end{pmatrix} (16c)$$

印加電界の大きさおよび方向は自由に選ぶことが できるが,光デバイスへの応用上次の3つのケース が特に重要である。

5.1 1つの結晶軸に平行に電界を加える場合 ここでは, $E_1 = E_2 = 0$, $E_3 = E$ について検討す る。検討する結晶が等方性であるから, $E_2 = E_3 = 0$, $E_1 = E$ あるいは $E_1 = E_3 = 0$, $E_2 = E$ でも結果は同 じである。このケースでは,光デバイスとして後段 に掲示する表 2 の図(d),(e)の 2 つの構成が有望で ある。いずれの構成も =0, =0, =-45°であり, これらを式(16)に代入すると,下式の屈折率を得る。

$$n_1' = n_o + \frac{1}{2} n_o^{3} r_{41} E$$
 (17a)

$$n_2' = n_o - \frac{1}{2} n_o^{3} r_{41} E \tag{17b}$$

$$n_1' = n_o \tag{17c}$$

次に逆圧電効果が与える光路長変化を求める。立 方晶系の圧電定数 *d*_{ji} は

$$d_{ji} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & d_{14} \\ 0 & 0 & 0 & 0 & d_{14} & 0 \\ 0 & 0 & 0 & d_{14} & 0 & 0 \end{pmatrix}$$
(18)

で与えられるから,式(18),式(11)および式(8)を用 いると,表2の図(d),(e)の光進行方向の歪*S*,およ び*S*,は以下の式で与えられる。

$$S_{3} = 0$$

$$S_{2}' = S_{12} = \frac{S_{6}}{2} = \frac{1}{2} d_{14} E$$
(19)

式(17)と式(19)を式(1)に代入すると,表2の図(d) のX₃方向に伝播し,X₁方向あるいはX₂方向に振 動する直線偏光の位相変化 q'_{X1} , q'_{X2} は,それぞれ 以下の式で与えられる。

$$q'_{X_{1}} = \frac{p}{l} n_{o}^{3} r_{41} \ell E$$

$$q'_{X_{2}} = -\frac{p}{l} n_{o}^{3} r_{41} \ell E$$
(20)

また表 2 の図(e)の X'_2 方向に伝播し, X_3 方向ある いは X'_2 方向に振動する直線偏光の位相変化 q'_{X1} , は, q'_{X3} それぞれ以下の式で与えられる。

$$q'_{X1} = \frac{p}{l} n_o^3 \ell E \left(r_{41} + \frac{d_{14}}{n_o^2} \right)$$

$$q'_{X3} = \frac{p}{l} n_o d_{14} \ell E$$
(21)

 r_{41} d_{14} となるような結晶では逆圧電効果に基づく光路長変化の影響は無視できるが, d_{14} r_{41} の結晶ではその影響は大きい。たとえば GaAs 結晶の圧電定数 d_{14} は 2.60 pC/N であり,電気光学係数 r_{41} (1.1pm/V)の約 2.4 倍にもなるため,そのデバイス設計には特に注意が必要である。¹⁰

5.2 2つの結晶軸に平行に同じ大きさの電界を加 える場合

このケースの典型例として, $E_1 = E_2 = E / \sqrt{2}$, $E_3 = 0$ を検討する。幾何学的構成を表 2 の図(a), (b) に示す。この構成では = 45°, = 0, = 45° である。5.1 小節と同じ段取りで,これらの回転角 度を式(16)に代入して屈折率を求める。また,式(11), 式(12),式(13)および式(8)を用いて歪を計算する。 それらの結果を式(1)に代入すると,表 2 の図(a),(b) における 4 つの位相変化を得る。

applied electric fields	rectangular coordinate axes	induced refractive indices	induced phase shifts	directions of optical path S and applied electric field E
$E_1 = E_2$ E	$x_{1}^{'} = \frac{x_{1} - x_{2}}{\sqrt{2}}$	$\mathbf{n}_1' = \mathbf{n}_0$ $\mathbf{n}_1' = \mathbf{n}_1 + \frac{1}{2} \mathbf{n}_1^3 \mathbf{r}_1 \mathbf{F}_1$	$\theta_{x2} = \frac{\pi}{\lambda} n_0^3 r_{41} l E$ $\theta_{x3} = -\frac{\pi}{\lambda} n_0^3 r_{41} l E$	(a) ℓ (001) X3 \times *1 ℓ (001) \times (001) \times X1 110 \times (100) \times X2 \times (100) \times (100
$=\frac{1}{\sqrt{2}}$ $E_3 = 0$	$x_{2} = \frac{1}{2} - \frac{1}{\sqrt{2}}$ $x_{3}' = \frac{x_{1} + x_{2}}{2} + \frac{x_{3}}{\sqrt{2}}$	$n_2 = n_0 + \frac{1}{2} n_0 r_{41}E$ $n_3 = n_0 - \frac{1}{2} n_0^3 r_{41}E$	$\theta_{x1} = \frac{\pi}{\lambda} n_0^3 d_{14} \ell E$ $\theta_{x2} = \frac{\pi}{\lambda} n_0^3 \ell E \left(r_{41} + \frac{d_{14}}{n_0^2} \right)$	(b) $x_{3[001]}$ *1 $x_{3[001]}$ (001) x_{1} (001) x_{2} (001) x_{3} (
$E_1 = E_2 = E_3$ $= \frac{E}{\sqrt{3}}$	*2 $x_1' = \frac{x_1 + x_2 + x_3}{\sqrt{3}}$	$ \begin{array}{l} \mathbf{n}_{3}^{\prime} = \mathbf{n}_{0} - \frac{1}{\sqrt{3}} \mathbf{n}_{0}^{3} \mathbf{r}_{41} \mathbf{E} \\ \mathbf{n}_{2}^{\prime} = \mathbf{n}_{3}^{\prime} \\ = \mathbf{n}_{0} + \frac{1}{2\sqrt{3}} \mathbf{n}_{0}^{3} \mathbf{r}_{41} \mathbf{E} \end{array} $	$\theta_{x1}' = -\frac{2\pi}{\sqrt{3}\lambda} n_0^3 l E \left(r_{41} - \frac{d_{14}}{2n_0^2} \right)$ $\theta_{x2}' = \frac{\pi}{\sqrt{3}\lambda} n_0^3 l E \left(r_{41} + \frac{d_{14}}{n_0^2} \right)$	(c) *2
$E_3 = E$	$x_{1}^{'} = \frac{x_{1} - x_{2}}{\sqrt{2}}$	$n'_{1} = n_{0} + \frac{1}{2} n_{0}^{3} r_{41} E$ $n'_{1} = n_{0} + \frac{1}{2} n_{0}^{3} r_{41} E$	$\theta_{x1} = \frac{\pi}{\lambda} n_0^3 r_{41} l E$ $\theta_{x2} = -\frac{\pi}{\lambda} n_0^3 r_{41} l E$	(d) $x_{1(170)}$ (110) x_{2} (x_{3}) x_{2} (x_{3}) x_{2} (x_{3}) x_{2} (x_{3}) (x_{3})
$E_1 = E_2$ =0	$x_2 = \frac{1}{\sqrt{2}}$ $x'_3 = x_3$	$n_2 = n_0 - \frac{1}{2} n_0 n_{41} E$ $n'_3 = n_0$	$\theta_{x1}' = \frac{\pi}{\lambda} n_0^3 \ell E \left(r_{41} + \frac{d_{14}}{n_0^2} \right)$ $\theta_{x3}' = \frac{\pi}{\lambda} n_0 d_{14} \ell E$	(e) $(x_1) \xrightarrow{(100)}_{45} \xrightarrow{(110)}_{x_1(100)} (x_2)$

表 2 点群 43m および 23 の結晶類における印加電界方向と透過光の位相変化の関係

*1 The axes x'_2 and x'_3 lie in the (110) plane and make angles of $\pm 45^{\circ}$ with x_3 , respectively.

*2 The axes x'_1 and x'_2 are allowed to lie in the (111) plane.

5.3 3つの結晶軸に平行に同じ大きさの電界 を加える場合

ここでは, $E_1 = E_2 = E_3 = E / \sqrt{3}$ について検討 する。この印加電界を式(7d),(7e),(7f)に代入する と, 交差項係数 A_4 , A_5 , A_6 はそれぞれ次式で与え られる。

- きないが,角度の値に拘わらずA₄=A₅=A₆=0 が成立するという条件を仮定すると,式(22)から次 の式(23)が導出され, および が決定される。す なわち、 式(22a)より
- $\sin 2\mathbf{x} \sin \mathbf{y} + \sin 2\mathbf{x} \cos \mathbf{y} + \sin 2\mathbf{y}$ $A_4 = r_{A1}E(\sin 2h\sin 2x\sin y + 2\cos 2h\cos x\cos y)$ (23a) $+\sin^2 x \sin 2y = 0$, +sin2hsin2xcosy-2cos2hcosxsiny+sin2hsin2y (22a) $+\sin^2 x \sin^2 y + 2\cos^2 h \sin x \cos^2 y)/\sqrt{3}$, $\cos x \cos y - \cos x \sin y$ (23b) $+\sin x \cos 2y = 0$, $A_5 = 2r_{41}E(\sinh \sin x \cos y + \cosh \cos 2x \sin y)$ 式(22b)より $+\cos h\cos 2x\cos y - \sin h\sin x\sin y + \cos h\sin 2x\sin 2y/2$ (22b) $-\sin h \cos x \cos 2y)/\sqrt{3}$ $\sin x \cos y - \sin x \sin y$ $A_6 = 2r_{41}E(\sin h\cos 2x\sin y - \cos h\sin x\cos y)$ $-\cos x \cos 2y = 0$, +coshsinxsiny+sinhcos2xcosy+coshcosxcos2y (22c)

 $+\sin h \sin 2x \sin 2y/2)/\sqrt{3}$.

式(22)から を一義的に決めることはで , .

(23c)

 $2\cos 2x\sin y + 2\cos 2x\cos y$ (23d) $+\sin 2x \sin 2y = 0$,

また,式(22c)より

 $2\cos 2\mathbf{x}\sin \mathbf{y} + 2\cos 2\mathbf{x}\cos \mathbf{y} + \sin 2\mathbf{x}\sin 2\mathbf{y} = 0,(23e)$

$$\sin \mathbf{x} \sin \mathbf{y} - \sin \mathbf{x} \cos \mathbf{y} + \cos \mathbf{x} \cos 2\mathbf{y} = 0.$$
(23f)

式(23)をすべて満足する回転角度は

である。すなわち,印加電界方向とX¹ 軸を結晶の [111]方向にすると,X²,X³ 軸を(111)面内で任意 の方向に設定でき,同面内において光の入射方向を 自由に選択することが可能になる。

X[']₁, X[']₂, X[']₃方向の屈折率 n'_1 , n'_2 , n'_3 は式(24) を式(7)に代入し, $E_1 = E_2 = E_3 = E / \sqrt{3}$ を適用す れば,次式を得る。

$$n_1' = n_0 - \frac{1}{\sqrt{3}} n_0^3 \boldsymbol{g}_{41} \boldsymbol{E}, \qquad (25a)$$

$$n'_{2} = n'_{3} = n_{0} + \frac{1}{2\sqrt{3}} n_{0}^{3} \boldsymbol{g}_{41} \boldsymbol{E}.$$
 (25b)

一方、X[']₁、X[']₂、X[']₃方向の歪テンソルS^m₁₁、S^m₂₂、S^m₃₃ は、式(24)および式(18)を式(11)、(12)、(13)、に代入し、E₁ = E₂ = E₃ = E /√3 を適用すると

$$S_{11}^{""} = \frac{1}{\sqrt{3}} d_{14} E , \qquad (26a)$$

$$S_{22}^{""} = -\frac{1}{2\sqrt{3}}d_{14} E, \qquad (26b)$$

$$S_{33}^{""} = -\frac{1}{2\sqrt{3}}d_{14}E$$
(26c)

となる。

ここで,光の電界がX¹,あるいはX²,方向に振動す る直線偏光がX³,方向にそって結晶中を進むとき, X¹,方向に印加された電界による光の位相変化は, 式(25a),(25b)から得られる屈折率変化と式(26c)で 表されるX³,方向の単位長あたりの結晶長変化を式 (1)に代入することにより,それぞれ次式のように与 えられる。

$$\boldsymbol{q}_{x1} = -\frac{2}{\sqrt{3}} n_0^3 lE\left(\boldsymbol{g}_{41} - \frac{d_{14}}{2n_0^2}\right), \qquad (27a)$$

$$\mathbf{q}'_{x\,2} = -\frac{1}{\sqrt{3}} n_0^3 l E \left(\mathbf{g}_{41} - \frac{d_{14}}{n_0^2} \right)$$
 (27b)

6.一軸性結晶を透過する光の印加電界による 位相変化

ー軸性結晶の印加電界による屈折率変化は, $n_1 = n_2 = n_0 \ge n_3 = n_e$ (n_e は異常光線屈折率)を式(7) に代入すれば得られるが,その交差項係数4, 5, 6は,等軸性結晶と異なり次式に示すように印加電 界に依存しない項 a_4, a_5, a_6 をそれぞれ持つ。

$$a_4 = \sin 2\mathbf{h} \cos^2 \mathbf{x} \left(\frac{1}{n_e^2} - \frac{1}{n_0^2} \right),$$
 (28a)

$$a_5 = \cos \mathbf{h} \sin 2\mathbf{x} \left(\frac{1}{n_0^2} - \frac{1}{n_e^2} \right),$$
 (28b)

$$a_6 = \sin \mathbf{h} \sin^2 \mathbf{x} \left(\frac{1}{n_0^2} - \frac{1}{n_e^2} \right).$$
 (28c)

従って 0および 0の場合には、*a*₄, *a*₅, *a*₆ は無視できない大きさを持つため, *r*_{4m}, *r*_{5m}, *r*_{6m}等の 電気光学係数で表される屈折率変化を求めることは 困難である。しかし, および のうち少なくとも1 つを0にすると、*a*₄, *a*₅, *a*₆のうち少なくとも2つが 0になるため, この場合,電界による屈折率変化を容 易に知ることができる。すなわち, ₃を光軸(Z軸) とする一軸性結晶では, ₃を軸として ₃に垂直な面 を回転する場合(は任意の角度, = = 0)と ₃を含む面を回転する場合(例えば は任意の角度,

= =0)の屈折率変化は容易に求めることができる。この2つのケースは一軸性結晶の電気光学効果を 考察するのに有効であり,かつ,光デバイスに利用 される光の伝搬方向と印加電界方向の関係は,これ らのいずれかに属するものが多い。

ここでは,光軸 3を軸として 3に垂直な面を任 意の角度 だけ回転する場合の屈折率を導出する。結 晶中の光の伝搬方向を '2に平行にすると,式(6)は

$$A_1 X_1^{'2} + A_3 X_3^{'2} + A_5 X_1 X_3^{'} = 1$$
⁽²⁹⁾

で与えられる。ここで係数 1, 3, 5 は, = =0 を式(7a), (7c), (7e)に代入することにより, そ れぞれ次式で与えられる。

$$A_{1} = \frac{1}{n_{0}^{2}} + (r_{1m} \cos^{2} \mathbf{y} + r_{2m} \sin^{2} \mathbf{y} + r_{6m} \sin 2 \mathbf{y}) E_{m}, \quad (30a)$$

 $A_3 = \frac{1}{n_e^2} + r_{3m} E_m,$ (30b)

$$A_5 = 2(r_{4m}\sin y + r_{5m}\cos y)E_m.$$
 (30c)

式(29)を交差項を持たない式に変換することは,2 次曲線の主軸変換であり,式(29)の固有値導出問題 に帰着する。その固有値*k*は

$$k = \frac{A_1 + A_3 \pm \sqrt{(A_1 - A_3)^2 + A_5^2}}{2}$$
(31)

で与えられる。ここで式(30)より得られる関係 (A_1 - A_3)² A_5^2 を式(31)に適用すると,固有値 k は次式で与えられる。

$$k \cong A_1, A_3. \tag{32}$$

従ってX¹およびX³方向の屈折率 n'_1 および n'_3 は, それぞれ次式で表される。

$$n_{1}'=n_{0}-\frac{1}{2}n_{0}^{3}(r_{1m}\cos^{2}\mathbf{y}+r_{2m}\sin^{2}\mathbf{y}+r_{6m}\sin 2\mathbf{y})E_{m},(33a)$$
$$n_{3}'=n_{e}-\frac{1}{2}n_{e}^{3}r_{3m}E_{m}.$$
(33b)

光がXi方向に平行に伝搬する場合のX2方向の屈 折率変化も同様にして求めることができ,その値は 式(33a)のrの添字の1と2を交換し,r_{6m}の符号を 変えた式で表される。

また,光の進行方向がX'3に平行な場合は,式(6)は

$$A_1 X_1^{'2} + A_2 X_2^{'2} + A_6 X_1 X_2^{'} = 1.$$
(34)

となる。ここで A_1 は式(30a)で与えられ, A_2 および A_6 は = =0 を式(7b)および(7f)に代入すること

により,それぞれ次式で表される。

$$A_{2} = \frac{1}{n_{0}^{2}} + (r_{1m} \sin^{2} \mathbf{y} + r_{2m} \cos^{2} \mathbf{y} - r_{6m} \sin 2 \mathbf{y}) E_{m}, (35a)$$

$$A_{6} = [(r_{2m} - r_{1m}) \sin 2 \mathbf{y} + 2r_{6m} \cos 2 \mathbf{y}] E_{m}. (35b)$$

式(34)の固有値 kは

$$k = \frac{1}{2} \left[\frac{2}{n_0^2} + (r_{1m} + r_{2m}) E_m \pm E_m \sqrt{(r_{1m} - r_{2m})^2 + 4r_{6m}^2} \right] (36)$$

であたえられるため,X¹₁,X¹₂方向の屈折率 n'_1 , n'_2 は それぞれ次式で表される。

$$n_{1}^{'} = n_{0} - \frac{1}{4} n_{0}^{3} E_{m} \left[r_{1m} + r_{2m} + \sqrt{(r_{1m} - r_{2m})^{2} + 4r_{6m}^{2}} \right], (37a)$$
$$n_{2}^{'} = n_{0} - \frac{1}{4} n_{0}^{3} E_{m} \left[r_{1m} + r_{2m} - \sqrt{(r_{1m} - r_{2m})^{2} + 4r_{6m}^{2}} \right]. (37b)$$

光軸を含む面を回転させる場合も同様にして屈折 率変化を求めることができるが、ここでは省略する。 X[']₁, X[']₂, X[']₃方向の歪テンソル成分S[']₁₁, S[']₂₂, S[']₃₃ は、式(11)に = =0を代入し、式(8)を用いると、 次式で表される。

$$S_{11}' = S_1' = \left(d_{m1} \cos^2 \mathbf{y} + d_{m2} \sin^2 \mathbf{y} + \frac{1}{2} d_{m6} \sin 2\mathbf{y} \right) E_m, \quad (38a)$$

$$S_{22}' = S_2' = \left(d_{m1} \sin^2 \mathbf{y} + d_{m2} \cos^2 \mathbf{y} - \frac{1}{2} d_{m6} \sin 2\mathbf{y} \right) E_m, \quad (38b)$$

$$S_{33}' = S_3' = d_{m3} E_m. \quad (38c)$$

従って、光の電界が X_1 あるいは X_3 方向に振動する直線偏光が X_2 方向にそって結晶中を伝搬するとき、電界 E_m による光の位相変化 q'_{X3} および q'_{X1} は、式(33a)、(33b)および式(38b)を式(1)に代入することにより、それぞれ次式で与えられる。

$$\mathbf{q}'_{x1} = -\frac{1}{\mathbf{I}} n_0^3 l E_m \left[r_{1m} \cos^2 \mathbf{y} + r_{2m} \sin^2 \mathbf{y} + r_{6m} \sin 2\mathbf{y} - \frac{2}{n_0^2} \left(d_{m1} \sin^2 \mathbf{y} + d_{m2} \cos^2 \mathbf{y} - \frac{1}{2} d_{m6} \sin 2\mathbf{y} \right) \right],$$
(39a)

$$\mathbf{q}_{x3}^{'} = -\frac{1}{\mathbf{I}} n_{0}^{3} l E_{m} \\ \left[r_{3m} - \frac{2}{n_{e}^{2}} \left(d_{m1} \sin^{2} \mathbf{y} + d_{m2} \cos^{2} \mathbf{y} - \frac{1}{2} d_{m6} \sin 2 \mathbf{y} \right) \right] (39b)$$

X²2方向に偏光しX¹方向に伝搬する光の印加電 界による位相変化も同様にして求めることができ, その値は式(39a)のrおよびdの添字1と2を交換し, r_{6m}とd_{m6}の符号を変えた式で表される。

また,光の進行方向がX₃に平行で,かつX₁あるいは向にX₂方向に直線偏光した光の位相変化**q**'_{x1} および**q**'_{x2}は,式(37a),(37b)および式(38c)を式(1) に代入することにより,それぞれ次式で与えられる。

$$\mathbf{q}_{x1}^{'} = -\frac{1}{2\mathbf{I}} n_{0}^{3} l E_{m} \left[r_{1m} + r_{2m} + \sqrt{(r_{1m} - r_{2m})^{2} + 4r_{6m}^{2}} - \frac{4}{n_{0}^{2}} d_{m3} \right], \quad (40a)$$
$$\mathbf{q}_{x2}^{'} = -\frac{1}{2\mathbf{I}} n_{0}^{3} l E_{m} \left[r_{1m} + r_{2m} - \sqrt{(r_{1m} - r_{2m})^{2} + 4r_{6m}^{2}} - \frac{4}{n_{0}^{2}} d_{m3} \right]. \quad (40b)$$

光軸X₃を含む面を回転する場合も同様に電界に よる光の位相変化を明らかにすることができるが, ここでは省略する。

次に応用上特に重要と考えられる結晶の属する点 群 4mm, 42m, 3m および 6 における結晶透過光の 印加電界による位相変化を明らかにする。これらの 点群の電気光学係数および圧電定数を以下に記す。 点群 4mm の電気光学係数 r_{ij} と圧電定数 d_{ji} 代表的な結晶: BaTiO₃, KTaNb_{1-x}O₃ (KTN), Ba_{0.25}Sr_{0.75}Nb₂O₆

$$r_{ij} = \begin{pmatrix} 0 & 0 & r_{13} \\ 0 & 0 & r_{13} \\ 0 & 0 & r_{33} \\ 0 & r_{51} & 0 \\ r_{51} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad d_{ji} = \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix}$$
(41)

点群42m の電気光学係数 r_{ij}と圧電定数 d_{ji} 代表的な結晶: KH₂PO₄ (KDP), KD₂PO₄ (KD^{*}P), (NH₄)H₂PO₄ (ADP), (NH₄)D₂PO₄, (AD^{*}P), CsH₂AsO₄, AgGaS₂

$$r_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{41} & 0 & 0 \\ 0 & r_{41} & 0 \\ 0 & 0 & r_{63} \end{pmatrix}, \quad d_{ji} = \begin{pmatrix} 0 & 0 & 0 & d_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{14} & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{36} \end{pmatrix}.$$
(42)

点群 3m の電気光学係数 r_{ij} と圧電定数 d_{ji} 代表的な結晶: LiNbO₃ (LN), LiTaO₃ (LT), Ag₃AsS₃

$$r_{ij} = \begin{pmatrix} 0 & -r_{22} & r_{13} \\ 0 & r_{22} & r_{13} \\ 0 & 0 & r_{33} \\ 0 & r_{51} & 0 \\ r_{51} & 0 & 0 \\ -2r_{22} & 0 & 0 \end{pmatrix} \quad d_{ji} = \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & -2d_{22} \\ -d_{22} & d_{22} & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix} (43)$$

点群 6 の電気光学係数 *r*_{ij} と圧電定数 *d*_{ji} 代表的な結晶: LiIO₃

$$r_{ij} = \begin{pmatrix} 0 & 0 & r_{13} \\ 0 & 0 & r_{13} \\ 0 & 0 & r_{33} \\ r_{41} & r_{51} & 0 \\ r_{51} & -r_{42} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad d_{ji} = \begin{pmatrix} 0 & 0 & 0 & d_{14} & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & -d_{14} & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix} \quad (44)$$

式(41)から式(44)までを式(39),式(40)などに代入 すれば,これらの点群における電界に誘起された光 の位相変化を明らかにすることが出来る。その結果 を表3から表6にまとめて示す。表中の図に記され たSは光の進行方向を表す。光軸が結晶の入射端面 に平行あるいは垂直でない場合には,光は結晶内で 常光線と異常光線に分離して伝播する。光が結晶端 面に垂直入射する場合,その分離角 は,

$$\mathbf{f} = \tan^{-1} \left[\frac{(n_e^2 - n_0^2) \sin 2\,\mathbf{r}}{n_0^2 + n_e^2 + (n_e^2 - n_0^2) \cos 2\,\mathbf{r}} \right]$$
(45)

で与えられる。(付録)ここで は光軸と光の入射方 向とのなす角である。

applied electric fields	rectangular induced coordinate refractive axes indices		induced phase shifts	directions of optical path S and applied electric field E
$E_1 = E$ $E_2 = E_3$ $=0$	$ x'_{1} = \frac{x_{1} + x_{3}}{\sqrt{2}} \\ x'_{2} = x_{2} \\ x'_{3} = \frac{-x_{1} + x_{3}}{\sqrt{2}} $	$n'_{2} = n_{0}$ $n'_{3} = n_{0e} + \frac{1}{2} n^{3}_{0e} r_{51} E$	$\theta_{x2} = \frac{\pi}{\lambda} n_0 d_{15} \ell E$ $\theta_{x3} = \frac{\pi}{\lambda} n_{0c}^3 \ell E \left(r_{51} + \frac{d_{15}}{n_{0e}^2} \right)$	(a) $(x_{2}) \xrightarrow{X_{1}[100]}_{[010]} = (x_{1}) \xrightarrow{X_{1}}_{(101)} = (x_{1}) $
$E_3 = E$ $E_1 = E_2$ $=0$	$x'_{1} = x_{1}$ $x'_{2} = x_{2}$ $x'_{3} = x_{3}$	$n'_{1} = n'_{2}$ = $n_{0} - \frac{1}{2} n_{0}^{3} r_{13} E$ $n'_{3} = n_{e} - \frac{1}{2} n_{e}^{3} r_{33} E$	$\theta_{x2}' = -\frac{\pi}{\lambda} n_0^3 \ell E \left(r_{13} - \frac{2}{n_0^2} d_{31} \right)$ $\theta_{x3}' = -\frac{\pi}{\lambda} n_e^3 \ell E \left(r_{33} - \frac{2}{n_e^2} d_{31} \right)$	(b) [001] X3 E [010] χ_3 E [010] χ_2 (001) χ_3 E [010] χ_2 (001) χ_3 E (001) χ_3 E

表3 点群 4mm の結晶類における印加電界方向と透過光の位相変化の関係

表4 点群 42m の結晶類における印加電界方向と透過光の位相変化の関係

applied electric fields	rectangular coordinate axes	induced refractive indices	induced phase shifts	directions of optical path S and applied electric field E
$E_1 = E$ $E_2 = E_3$ $=0$		$n'_{1} = n_{0}$ $n'_{3} = n_{0e} + \frac{1}{2} n^{3}_{0e} r_{41} E$	$\theta_{x1}' = \frac{\pi}{\lambda} n_0 d_{14} \ell E$ $\theta_{x3}' = \frac{\pi}{\lambda} n_{0e}^3 \ell E \left(r_{41} + \frac{d_{14}}{n_{0e}^2} \right)$	(a) $(x_1) \xrightarrow{(100)} (x_1) \xrightarrow{(100)} (x_2) \xrightarrow{(x_1)} (x_2) \xrightarrow{(x_1)} (x_2) \xrightarrow{(x_2)} $
$E_3 = E$ $E_1 = E_2$ = 0	$x'_{1} = \frac{x_{1} - x_{2}}{\sqrt{2}}$ $x'_{2} = \frac{x_{1} + x_{2}}{\sqrt{2}}$ $x'_{3} = x_{3}$	$n'_{1} = n_{0} + \frac{1}{2} n_{0}^{3} r_{63} E$ $n'_{2} = n_{0} - \frac{1}{2} n_{0}^{3} r_{63} E$ $n'_{3} = n_{e}$	$\theta_{x1}' = \frac{\pi}{\lambda} n_0^3 r_{63} l E$ $\theta_{x2}' = -\frac{\pi}{\lambda} n_0^3 r_{63} l E$ $\theta_{x1}' = \frac{\pi}{\lambda} n_0^3 l E \left(r_{63} + \frac{d_{36}}{n_0^2} \right)$ $\theta_{x3}' = \frac{\pi}{\lambda} n_0 d_{36} l E$	(b) $x_{1}(100)$ (110) (110) x_{2} (c) $x_{1}(100)$ (100) $x_{2}(100)$ (100) (100) (001) $x_{2}(00)$ (100) (100) (100) (100) $x_{2}(00)$ (100) (100) (100) $x_{2}(00)$ (100) (100

applied electric fields	rectangular coordinate axes	induced refractive indices	induced phase shifts	directions of optical path S and applied electric field E
$E_1 = E$ $E_2 = E_3$ $=0$	$x'_{1} = \frac{x_{1} + x_{2}}{\sqrt{2}}$ $x'_{2} = \frac{-x_{1} + x_{2}}{\sqrt{2}}$ $x'_{3} = x_{3}$	$n'_{1} = n_{0} + \frac{1}{2} n_{0}^{3} r_{22} E$ $n'_{2} = n_{0} - \frac{1}{2} n_{0}^{3} r_{22} E$	$\theta_{x1}' = \frac{\pi}{\lambda} n_0^3 r_{22} \ell E$ $\theta_{x2}' = -\frac{\pi}{\lambda} n_0^3 r_{22} \ell E$	(a) *1 45^{4} (100) ℓ (110) 45^{4} χ_{2}^{1} [10] χ_{2}^{1} [110] χ_{3}^{1} [110] χ_{2}^{1} [110] χ_{3}^{1} [011] [001]
		$n'_{2} = n_{0} - \frac{1}{2}n_{0}^{3}r_{22}E$ $n'_{3} = n_{e}$	$\theta_{x2} = \frac{\pi}{\lambda} n_0^3 l E \left(r_{22} + \frac{2}{n_0^2} d_{22} \right)$ $\theta_{x3} = \frac{2}{\lambda} \pi n_e d_{22} l E$	(b) $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
		$n'_{2} = n_{0}$ $n'_{3} = n_{0e} + \frac{1}{2}n^{3}_{0e}r_{51}E$	$\theta_{x2}' = \frac{\pi}{\lambda} n_0 d_{15} l E$ $\theta_{x3}' = \frac{\pi}{\lambda} n_{0e}^3 l E \left(r_{51} + \frac{d_{15}}{n_{0e}^2} \right)$	$(c)_{(\chi_{2})} \xrightarrow{\chi_{1}(100)}_{(100)} \xrightarrow{\mu}_{\chi_{2}} \xrightarrow{\chi_{2}}_{(100)} \xrightarrow{\chi_{1}(100)}_{\chi_{2}} \xrightarrow{\chi_{1}}_{(100)} \xrightarrow{\chi_{1}(100)}_{\chi_{2}} \chi$
		n'	$\theta_{x2}' = -\frac{\pi}{\lambda} n_0^3 \ell E \left(r_{22} + \frac{2}{n_0^2} d_{22} \right)$ $\theta_{x3}' = -\frac{2}{\lambda} \pi n_e d_{22} \ell E$	(d) $(100) = \frac{1000}{1000}$
$E_2 = E$ $E_1 = E_3$ $=0$	$\mathbf{x}_1 = \mathbf{x}_1$ $\mathbf{x}_2' = \mathbf{x}_2$ $\mathbf{x}_3' = \mathbf{x}_3$	$n_{1} = n_{0} + \frac{1}{2} n_{0} n_{22}E$ $n_{2}' = n_{0} - \frac{1}{2} n_{0}^{3} r_{22}E$ $n_{3}' = n_{e}$	$\theta_{x1} = \frac{\pi}{\lambda} n_0^3 \ell E \left(\mathbf{r}_{22} + \frac{2}{n_0^2} \mathbf{d}_{22} \right)$ $\theta_{x3} = \frac{2}{\lambda} \pi n_c \mathbf{d}_{22} \ell E$	(e) (e) (c)
			$\theta_{x1} = \frac{\pi}{\lambda} n_0^3 r_{22} l E$ $\theta_{x2} = -\frac{\pi}{\lambda} n_0^3 r_{22} l E$	(f) (100)
$E_3 = E$ $E_1 = E_2$ $=0$		$n'_{1} = n'_{2}$ = $n_{0} - \frac{1}{2}n_{0}^{3}r_{13}E$ $n'_{3} = n_{c} - \frac{1}{2}n_{c}^{3}r_{33}E$	$\theta_{x1}' = -\frac{\pi}{\lambda} n_0^3 l E\left(r_{13} - \frac{2}{n_0^2} d_{31}\right)$ $\theta_{x3}' = -\frac{\pi}{\lambda} n_e^3 l E\left(r_{33} - \frac{2}{n_e^2} d_{31}\right)$	$(g) \xrightarrow{X_3[001]} E \xrightarrow{(100)} S \xrightarrow{(100)} X_1[100]} (g)$

表5 点群 3m の結晶類における印加電界方向と透過光の位相変化の関係

*1 The axes x'_1 and x'_2 lie in the (00 · 1) plane and make angles of $\pm 45^{\circ}$ with x_2 , respectively. *2 The axes x'_1 and x'_3 lie in the (11 · 0) plane and make angles of $\pm 45^{\circ}$ with x_3 , respectively.

applied electric fields	rectangular coordinate axes	induced refractive indices	induced phase shifts	directions of optical path S and applied electric field E
E E	$\mathbf{x}_{1}^{'} = \mathbf{x}_{1}$ $\mathbf{x}_{2}^{'} = \frac{\mathbf{x}_{2} + \mathbf{x}_{3}}{\sqrt{2}}$	$n'_{1} = n_{0}$	$\theta_{\mathrm{x}1} = \frac{\pi}{\lambda} \mathbf{n}_0 \mathbf{d}_{14} l\mathbf{E}$	(a) $\begin{bmatrix} 100 \\ (X) \end{bmatrix} \xrightarrow{X} \begin{bmatrix} 001 \\ X \end{bmatrix}$
$\mathbf{E}_{l} = \mathbf{E}$	$x'_{3} = \frac{\frac{\sqrt{2}}{-x_{2} + x_{3}}}{\sqrt{2}}$	$n'_{3} = n_{0e} + \frac{1}{2} n_{0e}^{3} r_{41} E$	$\theta_{x3} = \frac{\pi}{\lambda} n_{0e}^{3} \ell E \left(r_{41} + \frac{d_{14}}{n_{0e}^{2}} \right)$	$\begin{array}{c} & & \\$
$\mathbf{E}_2 = \mathbf{E}_3$	$\mathbf{x}_{1}^{\prime} = \frac{\mathbf{x}_{1} + \mathbf{x}_{3}}{\sqrt{2}}$	$n'_2 = n_0$	$\theta_{x2}' = \frac{\pi}{\lambda} n_0 d_{15} t E$	$(b)_{\substack{(\chi_2)\\0 0 }} \overset{\chi_1[000]}{\underset{(100)}{\overset{E}{\overset{E}{\overset{E}{\overset{E}{\overset{E}{\overset{E}{\overset{E}{$
0		$n{3}' = n_{0e} + \frac{1}{2} n_{0e}^{3} r_{51} E$	$\theta_{x3} = \frac{\pi}{\lambda} n_{0e}^3 l E\left(\mathbf{r}_{51} + \frac{\mathbf{d}_{15}}{n_{0e}^2}\right)$	$\begin{array}{c} 135 \\ s \\ 45 \\ x_{1} \\ \hline 1010 \\ x_{1} \\ \hline 1011 \\ x_{1} \\ \hline 1001 \\ x_{1} \\ \hline 1001 \\ \hline 1$
$E_3 = E$	$x'_1 = x_1$	$n'_1 = n'_2$	$\theta_{x_1}' = -\frac{\pi}{2} n_0^3 l E \left(r_{12} - \frac{2}{2} d_{31} \right)$	(c)
$E_1 = E_2$	$x'_{2} = x_{2}$	$= n_0 - \frac{1}{2} n_0^3 r_{13} E$	$ \begin{array}{c} \dots \\ \lambda \end{array} = \begin{pmatrix} 13 \\ n_0^2 \end{pmatrix} $	
=0	$x'_{3} = x_{3}$	$n'_{3} = n_{e} - \frac{1}{2} n_{e}^{3} r_{33} E$	$\theta_{s3}' = -\frac{\pi}{\lambda} n_e^3 t E \left(r_{33} - \frac{2}{n_e^2} d_{31} \right)$	$(0 0) \qquad \ell \longrightarrow \chi_2 \\ \chi_1[100] \qquad [010]$

表6 点群6の結晶類における印加電界方向と透過光の位相変化の関係

7.逆電圧効果が電気光学係数の測定および光 デバイス設計に与える影響

電気光学係数の測定方法は Michelson 干渉法や Mach-Zehender 干渉法のように電界による光の位 相変化を検出する位相検出法^{8,9,11}と, Senarmont 法¹²⁻¹⁵のように互いに直交した2つの直線偏光の間 の印加電界による位相差(リタデイション)を検出 するリタデイション検出法とに大別される。初めに 位相検出法で電気光学係数を測定する場合について 考察する。表2から表6の解析結果が示すように、 多くの場合光の位相変化は電気光学効果と共に逆圧 電効果の影響も受けるため, 位相検出法を用いた低 周波領域の測定では,応力一定の状態にある結晶の 電気光学係数と圧電定数からなる係数を直接求める ことができる。この係数は光偏向器や分岐干渉型光 変調器のように光の位相変化を直接利用する素子の 設計に有用であり,本論文では実効的電気光学係数 r'と呼ぶことにする。式(39a)を例にとるとr'は次 式で与えられる。

$$r' = r_{1m} \cos^{2} \mathbf{y} + r_{2m} \sin^{2} \mathbf{y} + r_{6m} \sin 2 \mathbf{y} - \frac{2}{n_{0}^{2}} (d_{m1} \sin^{2} \mathbf{y} + d_{m2} \cos^{2} \mathbf{y} - \frac{1}{2} d_{m6} \sin 2 \mathbf{y}).$$
(46)

これまでに,点群4,4mm,3,3m,6および6mm に属する結晶の電気光学係数 *r*₁₃,*r*₃₃ など,リタデ イション検出法では電気光学係数と圧電定数を分離 して測定することが困難な係数をはじめとして, 様々な結晶の電気光学係数が位相検出法を用いて測 定されている。これまでの解析で明らかなように, 逆圧電効果を無視できない低周波領域で測定された 従来の係数の値は,応力一定の状態にある結晶の電 気光学係数ではなく,実効的電気光学係数である場 合が多い。これらのデータの中にはLiNbO₃ LiTaO₃ および CdS など応用上重要な結晶の係数 r₁₃, r₃₃の 測定値も含まれている。多くの結晶の圧電定数は明 らかになっているから,実効的電気光学係数が明らかで あれば,応力一定の状態にある結晶の電気光学係数を求 めることが出来そうであるが,そうではない。

位相検出法を用いて応力一定の状態にある結晶の 電気光学係数を求めるためには,さらにもうひとつ の条件である「実効的電気光学係数と圧電定数の相 対的符号関係」を知る必要がある。これまでに相対 的符号関係が明らかになっているのは,点群 42m に 属する KDP 結晶および ADP 結晶だけである。² 実 用上有望な電気光学結晶の符号関係は,早急に明ら かにしなければならない。筆者はこの研究も進めて いるが,その報告は別の機会にしたい。

次にリタデイション検出法で電気光学係数を測定 する場合について考察する。表2の図(c)に示すような印 加電界方向を持つ等軸性結晶においては,互いに直交す る2つの直線偏光の間の印加電界による位相差 は

$$\Delta \mathbf{q} = \mathbf{q}'_{x1} - \mathbf{q}'_{x2} = \frac{\sqrt{3}}{l} \quad n_0^3 r_{41} \, lE \tag{47}$$

で与えられる。また,表5の図(g)に示すような印加 電界方向を持つ一軸性結晶においては,2つの直線 偏光の間の位相差 は

 $\Delta \boldsymbol{q} = \boldsymbol{q}_{x1} - \boldsymbol{q}_{x3} = \frac{1}{\boldsymbol{I}} n_e^3 lE \left[r_{33} - \left(\frac{n_0}{n_e}\right)^3 r_{13} \right] + \frac{2}{\boldsymbol{I}} (n_0 - n_e) d_{31} lE$ $\cong \frac{1}{\boldsymbol{I}} n_e^3 lE \left[r_{33} - \left(\frac{n_0}{n_e}\right)^3 r_{13} \right]$ (48)

で与えられる。ここで右辺の第2項は第1項に比べて 一般に非常に小さいためこれを省略することができる。

以上の2例が示すようにリタデイション検出法を 用いると,光路長変化の影響を考慮せずに応力一定 の状態にある結晶の電気光学係数を直接求めること ができる。しかし,リタデイション検出法で測定さ れた低周波領域の電気光学係数を用いて光の位相変 化を直接利用する素子を設計する場合には,逆圧電 効果に基づく光路長変化を考慮しなければならない。

本節ではこれら2つの測定法で求められる電気光 学係数の特徴と、その測定値を光デバイス設計に利 用する場合の注意すべき点を示した。これまでに多 くの結晶の低周波領域の電気光学係数が測定されて いるが、これらの係数を用いて光デバイスを設計す るには、そのデータがどちらの検出法(リタデイシ ョン検出法あるいは位相検出法)によるものかを十 分チェックしておく必要がある。

8.結論

本論文で行った解析とその主な結果を取りまとめ ると次のようになる。

- (1) 結晶透過光の印加電界による位相変化は,電気 光学効果に基づく屈折率変化と逆圧電効果に 基づく光路長変化に依存することを明らかに し,等軸性および一軸性結晶に電界を印加した ときの屈折率変化および歪テンソルの変化を 解析した。
- (2) 光デバイスへの応用上重要な結晶類の属する点 群 43m , 23 , 4mm , 42m , 3m , および 6 にお ける代表的な印加電界方向と光の位相変化の関 係を明らかにした。
- (3) Michelson 干渉法や Mach-Zehnder 干渉法で代 表される位相検出法は,応力一定の状態にある 結晶の電気光学係数と圧電定数からなる実効

的電気光学係数を求めるものである。点群4, 4mm,3,3m,6および6mmに属する結晶の 電気光学係数 r₁₃および r₃₃は,主として位相検 出法により測定されているため,低周波領域に おけるこれまでの測定値の多くは実効的電気 光学係数である。

(4) 2 つの直線偏光の間の印加電界による位相差を 検出するリタデイション検出法は,応力一定の 状態にある結晶の電気光学係数を直接求める ものである。一方,この電気光学係数を用いて 光偏向器や分岐干渉型光変調器のように光の 位相変化を直接利用するデバイスを設計する 場合には,逆圧電効果に基づく光路長変化を考 慮しなければならない。

[付録]

一軸結晶中の常光線と異常光線の分離角の導出

正の一軸結晶の屈折率楕円体を異常光線の波面法線 A と結晶の光軸 X_3 とを含む平面で切断した状態を図 A.1 に示す。光が結晶端面に垂直に入射する場合,A は常 光線の波面法線とも一致する。従って,ポインティングベ クトルをPとすると,図A.1 に示すように $\angle P'ON = f$ が結晶中の常光線と異常光線の分離角を表す。ここ で,光波の電界をE,電束密度をDとすると, $E \perp P$ および D \perp A の関係より $E \ge D$ のなす角が両光線 の分離角に等しくなる。

従って波面法線 A と光軸 X₃とのなす角をr とす ると,図 A.1 より次式を得る。

$$\tan \mathbf{r} = \frac{D_{X_3}}{D_{X_1}} = \frac{n_e^2 E_{X_3}}{n_o^2 E_{X_1}} = \left(\frac{n_e}{n_o}\right)^2 \tan\left(\mathbf{r} - \mathbf{f}\right) \qquad (\mathbf{A} \cdot \mathbf{1})$$

ただし, D_{X_1}, D_{X_3} は電束密度の X_1 および X_3 方向の成分であり, E_{X_1}, E_{X_3} は光の電界の X_1 および X_3 方向の成分である。式(A・1)を について解くと次式を得る。

$$\mathbf{f} = \tan^{-1} \left[\frac{\left(n_e^2 - n_o^2 \right) \sin 2 \mathbf{r}}{n_o^2 + n_e^2 + \left(n_e^2 - n_o^2 \right) \cos 2 \mathbf{r}} \right] \quad (\mathbf{A} \cdot 2)$$

図 A.1 正の一軸結晶の屈折率楕円体の主断面

参考文献

- K. Takizawa and M. Okada, "Simple method for measuring electro-optic coefficients by detecting the interference signal between transmitted and reflected beams," J. Opt. Soc. Am. 72, 809-811 (1982).
- K. Takizawa and M. Okada," Determination of relative signs of electro-optic and piezoelectric coefficients by measuring optical phase shifts caused by an applied electric field," J. Opt. Soc. Am. B 2, 289-293 (1985).
- K. Takizawa, "Analysis of electro-optic crystal-based Fabry-Perot etalons for high-speed spatial light modulators," Appl. Opt. 42, 1052-1067 2003.
- 小林慎治, 菊池 宏, 滝沢國治,「ポッケルス効 果と逆圧電効果を利用した縦型光変調素子の設 計」,信学論 C, **J86-C**, 83-85 (2003).
- 滝沢國治、「高速空間光変調素子用電気光学ファ ブリ・ペロー共振器の解析」、成蹊大学光学研究 報告、Vol.40, No.2, 57-72, (2003).
- 菊池 宏,小林慎治,滝沢國治,「ポッケルス効 果と逆圧電効果に基づく縦型光変調素子の解析 と実験的検証」,信学論 C, J87-C, 276-277 (2004).
- 滝沢國治,小林慎治,菊池 宏,「電気光学効果 と逆圧電効果を利用した縦型光変調素子」,成蹊 大学工学研究報告, Vol.41, No.1, 21-27, (2004).
- J. D. Zook, D. Chen and G. N. Otto, "Temperature dependence and model of the electro-optic effect in LiNbO₃," Appl. Phys. Lett. **11**, 159-161, (1967).
- K. Onuki, N. Uchida and T. Saku, "Interferometric method for measuring electro-optic coefficients in crystals," J. Opt. Soc. Am. 62, 1030-1033, (1972).

- K. -H. Hellwege, Editor in chief, LANDOLT BÖRNSTEIN, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Vol.11, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals (Springer-Verlag Berlin, Heidelberg, New York 1979) pp.363,556.
- V. V. Spirin, C. Lee and K. No, "measurement of the Pockels coefficient of lead zirconate titanate thin films by a two-beam polarization interferometer with a reflection configuration," J. Opt. Soc. Am. 15, 1940-1946 (1998).
- R. O'B. Carpenter, "The electro-optic effect in uniaxial crystals of the dihydrogen phosphate type," J. Opt. Soc. Am 40, 225-229 (1950).
- S. Mamba, "Electro-optic effect of zincblende," J. Opt. Soc. Am **51**, 76-79 (1961).
- K. Takizawa, "A measurement of electrooptic coefficients using a Lissajous figure," Opt. Commun. 34, 413-416 (1980).
- 15. L. Guilbert and J. P. Salvestrini, "Indirect Pockels effect in rubidium hydrogen selenate: measurement of the larger r_{42} coefficient," J. Opt. Soc. Am. B 17, 1980-1985 (2000).